110,570 research outputs found

    Optimal Execution with Dynamic Order Flow Imbalance

    Full text link
    We examine optimal execution models that take into account both market microstructure impact and informational costs. Informational footprint is related to order flow and is represented by the trader's influence on the flow imbalance process, while microstructure influence is captured by instantaneous price impact. We propose a continuous-time stochastic control problem that balances between these two costs. Incorporating order flow imbalance leads to the consideration of the current market state and specifically whether one's orders lean with or against the prevailing order flow, key components often ignored by execution models in the literature. In particular, to react to changing order flow, we endogenize the trading horizon TT. After developing the general indefinite-horizon formulation, we investigate several tractable approximations that sequentially optimize over price impact and over TT. These approximations, especially a dynamic version based on receding horizon control, are shown to be very accurate and connect to the prevailing Almgren-Chriss framework. We also discuss features of empirical order flow and links between our model and "Optimal Execution Horizon" by Easley et al (Mathematical Finance, 2013).Comment: 31 pages, 8 figure

    Bayesian forecasting and scalable multivariate volatility analysis using simultaneous graphical dynamic models

    Full text link
    The recently introduced class of simultaneous graphical dynamic linear models (SGDLMs) defines an ability to scale on-line Bayesian analysis and forecasting to higher-dimensional time series. This paper advances the methodology of SGDLMs, developing and embedding a novel, adaptive method of simultaneous predictor selection in forward filtering for on-line learning and forecasting. The advances include developments in Bayesian computation for scalability, and a case study in exploring the resulting potential for improved short-term forecasting of large-scale volatility matrices. A case study concerns financial forecasting and portfolio optimization with a 400-dimensional series of daily stock prices. Analysis shows that the SGDLM forecasts volatilities and co-volatilities well, making it ideally suited to contributing to quantitative investment strategies to improve portfolio returns. We also identify performance metrics linked to the sequential Bayesian filtering analysis that turn out to define a leading indicator of increased financial market stresses, comparable to but leading the standard St. Louis Fed Financial Stress Index (STLFSI) measure. Parallel computation using GPU implementations substantially advance the ability to fit and use these models.Comment: 28 pages, 9 figures, 7 table
    • …
    corecore