6 research outputs found

    VBCA: A Virtual Forces Clustering Algorithm for Autonomous Aerial Drone Systems

    Get PDF
    We consider the positioning problem of aerial drone systems for efficient three-dimensional (3-D) coverage. Our solution draws from molecular geometry, where forces among electron pairs surrounding a central atom arrange their positions. In this paper, we propose a 3-D clustering algorithm for autonomous positioning (VBCA) of aerial drone networks based on virtual forces. These virtual forces induce interactions among drones and structure the system topology. The advantages of our approach are that (1) virtual forces enable drones to self-organize the positioning process and (2) VBCA can be implemented entirely localized. Extensive simulations show that our virtual forces clustering approach produces scalable 3-D topologies exhibiting near-optimal volume coverage. VBCA triggers efficient topology rearrangement for an altering number of nodes, while providing network connectivity to the central drone. We also draw a comparison of volume coverage achieved by VBCA against existing approaches and find VBCA up to 40% more efficient

    LSWTC: A local small-world topology control algorithm for backbone-assisted mobile ad hoc networks

    Full text link

    Dynamic Multi-hop Routing Protocol Based on Fuzzy-Firefly Algorithm for Data Similarity Aware Node Clustering in WSNs

    Get PDF
    In multi-hop routing, cluster heads close to the base station functionaries as intermediate nodes for father cluster heads to relay the data packet from regular nodes to base station. The cluster heads that act as relays will experience energy depletion quicker that causes hot spot problem. This paper proposes a dynamic multihop routing algorithm named Data Similarity Aware for Dynamic Multi-hop Routing Protocol (DSA-DMRP) to improve the network lifetime, and satisfy the requirement of multi-hop routing protocol for the dynamic node clustering that consider the data similarity of adjacent nodes. The DSA-DMRP uses fuzzy aggregation technique to measure their data similarity degree in order to partition the network into unequal size clusters. In this mechanism, each node can recognize and note its similar neighbor nodes. Next, K-hop Clustering Algorithm (KHOPCA) that is modified by adding a priority factor that considers residual energy and distance to the base station is used to select cluster heads and create the best routes for intra-cluster and inter-cluster transmission. The DSA-DMRP was compared against the KHOPCA to justify the performance. Simulation results show that, the DSA DMRP can improve the network lifetime longer than the KHOPCA and can satisfy the requirement of the dynamic multi-hop routing protocol

    Swarm-based counter UAV defense system

    Get PDF
    Unmanned Aerial Vehicles (UAVs) have quickly become one of the promising Internet-of-Things (IoT) devices for smart cities. Thanks to their mobility, agility, and onboard sensors'customizability, UAVs have already demonstrated immense potential for numerous commercial applications. The UAVs expansion will come at the price of a dense, high-speed and dynamic traffic prone to UAVs going rogue or deployed with malicious intent. Counter UAV systems (C-UAS) are thus required to ensure their operations are safe. Existing C-UAS, which for the majority come from the military domain, lack scalability or induce collateral damages. This paper proposes a C-UAS able to intercept and escort intruders. It relies on an autonomous defense UAV swarm, capable of self-organizing their defense formation and to intercept the malicious UAV. This fully localized and GPS-free approach follows a modular design regarding the defense phases and it uses a newly developed balanced clustering to realize the intercept- and capture-formation. The resulting networked defense UAV swarm is resilient to communication losses. Finally, a prototype UAV simulator has been implemented. Through extensive simulations, we demonstrate the feasibility and performance of our approach

    Learning to Optimise a Swarm of UAVs

    Get PDF
    The use of Unmanned Aerial Vehicles (UAVs) has shown a drastic increase in interest in the past few years. Current applications mainly depend on single UAV operations, which face critical limitations such as mission range or resilience. Using several autonomous UAVs as a swarm is a promising approach to overcome these. However, designing an efficient swarm is a challenging task, since its global behaviour emerges solely from local decisions and interactions. These properties make classical multirobot design techniques not applicable, while evolutionary swarm robotics is typically limited to a single use case. This work, thus, proposes an automated swarming algorithm design approach, and more precisely, a generative hyper-heuristic relying on multi-objective reinforcement learning, that permits us to obtain not only efficient but also reusable swarming behaviours. Experimental results on a three-objective variant of the Coverage of a Connected UAV Swarm problem demonstrate that it not only permits one to generate swarming heuristics that outperform the state-of-the-art in terms of coverage by a swarm of UAVs but also provides high stability. Indeed, it is empirically demonstrated that the model trained on a certain class of instances generates heuristics and is capable of performing well on instances with a different size or swarm density
    corecore