590,766 research outputs found

    Hamiltonian equation of motion and depinning phase transition in two-dimensional magnets

    Full text link
    Based on the Hamiltonian equation of motion of the ϕ4\phi^4 theory with quenched disorder, we investigate the depinning phase transition of the domain-wall motion in two-dimensional magnets. With the short-time dynamic approach, we numerically determine the transition field, and the static and dynamic critical exponents. The results show that the fundamental Hamiltonian equation of motion belongs to a universality class very different from those effective equations of motion.Comment: 6 pages, 7 figures, have been accept by EP

    Equation of motion and subsonic-transonic transitions of rectilinear edge dislocations: A collective-variable approach

    Full text link
    A theoretical framework is proposed to derive a dynamic equation motion for rectilinear dislocations within isotropic continuum elastodynamics. The theory relies on a recent dynamic extension of the Peierls-Nabarro equation, so as to account for core-width generalized stacking-fault energy effects. The degrees of freedom of the solution of the latter equation are reduced by means of the collective-variable method, well known in soliton theory, which we reformulate in a way suitable to the problem at hand. Through these means, two coupled governing equations for the dislocation position and core width are obtained, which are combined into one single complex-valued equation of motion, of compact form. The latter equation embodies the history dependence of dislocation inertia. It is employed to investigate the motion of an edge dislocation under uniform time-dependent loading, with focus on the subsonic/transonic transition. Except in the steady-state supersonic range of velocities---which the equation does not address---our results are in good agreement with atomistic simulations on tungsten. In particular, we provide an explanation for the transition, showing that it is governed by a loading-dependent dynamic critical stress. The transition has the character of a delayed bifurcation. Moreover, various quantitative predictions are made, that could be tested in atomistic simulations. Overall, this work demonstrates the crucial role played by core-width variations in dynamic dislocation motion.Comment: v1: 11 pages, 4 figures. v2: title changed, extensive rewriting, and new material added; 19 pages, 12 figures (content as published

    A new view on relativity: Part 2. Relativistic dynamics

    Get PDF
    The Lorentz transformations are represented on the ball of relativistically admissible velocities by Einstein velocity addition and rotations. This representation is by projective maps. The relativistic dynamic equation can be derived by introducing a new principle which is analogous to the Einstein's Equivalence Principle, but can be applied for any force. By this principle, the relativistic dynamic equation is defined by an element of the Lie algebra of the above representation. If we introduce a new dynamic variable, called symmetric velocity, the above representation becomes a representation by conformal, instead of projective maps. In this variable, the relativistic dynamic equation for systems with an invariant plane, becomes a non-linear analytic equation in one complex variable. We obtain explicit solutions for the motion of a charge in uniform, mutually perpendicular electric and magnetic fields. By the above principle, we show that the relativistic dynamic equation for the four-velocity leads to an analog of the electromagnetic tensor. This indicates that force in special relativity is described by a differential two-form

    Explicit solutions for relativistic acceleration and rotation

    Full text link
    The Lorentz transformations are represented by Einstein velocity addition on the ball of relativistically admissible velocities. This representation is by projective maps. The Lie algebra of this representation defines the relativistic dynamic equation. If we introduce a new dynamic variable, called symmetric velocity, the above representation becomes a representation by conformal, instead of projective maps. In this variable, the relativistic dynamic equation for systems with an invariant plane, becomes a non-linear analytic equation in one complex variable. We obtain explicit solutions for the motion of a charge in uniform, mutually perpendicular electric and magnetic fields. By assuming the Clock Hypothesis and using these solutions, we are able to describe the space-time transformations between two uniformly accelerated and rotating systems.Comment: 15 pages 1 figur

    Nonequilibrium Phase Transition in the Kinetic Ising model: Critical Slowing Down and Specific-heat Singularity

    Full text link
    The nonequilibrium dynamic phase transition, in the kinetic Ising model in presence of an oscillating magnetic field, has been studied both by Monte Carlo simulation and by solving numerically the mean field dynamic equation of motion for the average magnetisation. In both the cases, the Debye 'relaxation' behaviour of the dynamic order parameter has been observed and the 'relaxation time' is found to diverge near the dynamic transition point. The Debye relaxation of the dynamic order parameter and the power law divergence of the relaxation time have been obtained from a very approximate solution of the mean field dynamic equation. The temperature variation of appropiately defined 'specific-heat' is studied by Monte Carlo simulation near the transition point. The specific-heat has been observed to diverge near the dynamic transition point.Comment: Revtex, Five encapsulated postscript files, submitted to Phys. Rev.

    On the "generalized Generalized Langevin Equation"

    Full text link
    In molecular dynamics simulations and single molecule experiments, observables are usually measured along dynamic trajectories and then averaged over an ensemble ("bundle") of trajectories. Under stationary conditions, the time-evolution of such averages is described by the generalized Langevin equation. In contrast, if the dynamics is not stationary, it is not a priori clear which form the equation of motion for an averaged observable has. We employ the formalism of time-dependent projection operator techniques to derive the equation of motion for a non-equilibrium trajectory-averaged observable as well as for its non-stationary auto-correlation function. The equation is similar in structure to the generalized Langevin equation, but exhibits a time-dependent memory kernel as well as a fluctuating force that implicitly depends on the initial conditions of the process. We also derive a relation between this memory kernel and the autocorrelation function of the fluctuating force that has a structure similar to a fluctuation-dissipation relation. In addition, we show how the choice of the projection operator allows to relate the Taylor expansion of the memory kernel to data that is accessible in MD simulations and experiments, thus allowing to construct the equation of motion. As a numerical example, the procedure is applied to Brownian motion initialized in non-equilibrium conditions, and is shown to be consistent with direct measurements from simulations
    corecore