747,389 research outputs found
Experimental Synthetic Aperture Radar with Dynamic Metasurfaces
We investigate the use of a dynamic metasurface as the transmitting antenna
for a synthetic aperture radar (SAR) imaging system. The dynamic metasurface
consists of a one-dimensional microstrip waveguide with complementary electric
resonator (cELC) elements patterned into the upper conductor. Integrated into
each of the cELCs are two diodes that can be used to shift each cELC resonance
out of band with an applied voltage. The aperture is designed to operate at K
band frequencies (17.5 to 20.3 GHz), with a bandwidth of 2.8 GHz. We
experimentally demonstrate imaging with a fabricated metasurface aperture using
existing SAR modalities, showing image quality comparable to traditional
antennas. The agility of this aperture allows it to operate in spotlight and
stripmap SAR modes, as well as in a third modality inspired by computational
imaging strategies. We describe its operation in detail, demonstrate
high-quality imaging in both 2D and 3D, and examine various trade-offs
governing the integration of dynamic metasurfaces in future SAR imaging
platforms
Terahertz dynamic aperture imaging at stand-off distances using a Compressed Sensing protocol
In this text, results of a 0.35 terahertz (THz) dynamic aperture imaging
approach are presented. The experiments use an optical modulation approach and
a single pixel detector at a stand-off imaging distance of approx 1 meter. The
optical modulation creates dynamic apertures of 5cm diameter with approx 2000
individually controllable elements. An optical modulation approach is used here
for the first time at a large far-field distance, for the investigation of
various test targets in a field-of-view of 8 x 8 cm. The results highlight the
versatility of this modulation technique and show that this imaging paradigm is
applicable even at large far-field distances. It proves the feasibility of this
imaging approach for potential applications like stand-off security imaging or
far field THz microscopy.Comment: 9 pages, 13 figure
Digital detection of biomarkers for low-cost, high-sensitivity diagnostics
We have demonstrated Interferometric Reflectance Imaging Sensor (IRIS) with the ability to detect single nanoscale particles. By extending single-particle IRIS to in-liquid dynamic imaging, we demonstrated real-time digital detection of individual viral pathogens as well as single molecules labeled with Au nanoparticles. With this technique we demonstrate real-time simultaneous detection of multiple targets in a single sample, as well as quantitative dynamic detection of individual biomolecular interactions for reaction kinetics measurements. This approach promises to simplify and reduce the cost of rapid diagnostics.Accepted manuscrip
Dynamic pore-scale reservoir-condition imaging of reaction in carbonates using synchrotron fast tomography
Synchrotron fast tomography was used to dynamically image dissolution of limestone in the presence of CO2-saturated brine at reservoir conditions. 100 scans were taken at a 6.1 µm resolution over a period of 2 hours. Underground storage permanence is a major concern for carbon capture and storage. Pumping CO2 into carbonate reservoirs has the potential to dissolve geologic seals and allow CO2 to escape. However, the dissolution processes at reservoir conditions are poorly understood. Thus, time-resolved experiments are needed to observe and predict the nature and rate of dissolution at the pore scale. Synchrotron fast tomography is a method of taking high-resolution time-resolved images of complex pore structures much more quickly than traditional µ-CT . The Diamond Lightsource Pink Beam was used to dynamically image dissolution of limestone in the presence of CO2-saturated brine at reservoir conditions. 100 scans were taken at a 6.1 µm resolution over a period of 2 hours. The images were segmented and the porosity and permeability were measured using image analysis and network extraction. Porosity increased uniformly along the length of the sample; however, the rate of increase of both porosity and permeability slowed at later times
Towards dynamic camera calibration for constrained flexible mirror imaging
Flexible mirror imaging systems consisting of a perspective
camera viewing a scene reflected in a flexible mirror can provide direct control over image field-of-view and resolution. However, calibration of such systems is difficult due to the vast range of possible mirror shapes
and the flexible nature of the system. This paper proposes the fundamentals of a dynamic calibration approach for flexible mirror imaging systems by examining the constrained case of single dimensional flexing.
The calibration process consists of an initial primary calibration stage followed by in-service dynamic calibration. Dynamic calibration uses a
linear approximation to initialise a non-linear minimisation step, the result of which is the estimate of the mirror surface shape. The method is
easier to implement than existing calibration methods for flexible mirror imagers, requiring only two images of a calibration grid for each dynamic
calibration update. Experimental results with both simulated and real data are presented that demonstrate the capabilities of the proposed approach
High dynamic range imaging for archaeological recording
This paper notes the adoption of digital photography as a primary recording means within archaeology, and reviews some issues and problems that this presents. Particular attention is given to the problems of recording high-contrast scenes in archaeology and High Dynamic Range imaging using multiple exposures is suggested as a means of providing an archive of high-contrast scenes that can later be tone-mapped to provide a variety of visualisations. Exposure fusion is also considered, although it is noted that this has some disadvantages. Three case studies are then presented (1) a very high contrast photograph taken from within a rock-cut tomb at Cala Morell, Menorca (2) an archaeological test pitting exercise requiring rapid acquisition of photographic records in challenging circumstances and (3) legacy material consisting of three differently exposed colour positive (slide) photographs of the same scene. In each case, HDR methods are shown to significantly aid the generation of a high quality illustrative record photograph, and it is concluded that HDR imaging could serve an effective role in archaeological photographic recording, although there remain problems of archiving and distributing HDR radiance map data
- …
