326 research outputs found

    Explainable Planning

    Get PDF
    As AI is increasingly being adopted into application solutions, the challenge of supporting interaction with humans is becoming more apparent. Partly this is to support integrated working styles, in which humans and intelligent systems cooperate in problem-solving, but also it is a necessary step in the process of building trust as humans migrate greater responsibility to such systems. The challenge is to find effective ways to communicate the foundations of AI-driven behaviour, when the algorithms that drive it are far from transparent to humans. In this paper we consider the opportunities that arise in AI planning, exploiting the model-based representations that form a familiar and common basis for communication with users, while acknowledging the gap between planning algorithms and human problem-solving.Comment: Presented at the IJCAI-17 workshop on Explainable AI (http://home.earthlink.net/~dwaha/research/meetings/ijcai17-xai/). Melbourne, August 201

    Enabling Robots to Communicate their Objectives

    Full text link
    The overarching goal of this work is to efficiently enable end-users to correctly anticipate a robot's behavior in novel situations. Since a robot's behavior is often a direct result of its underlying objective function, our insight is that end-users need to have an accurate mental model of this objective function in order to understand and predict what the robot will do. While people naturally develop such a mental model over time through observing the robot act, this familiarization process may be lengthy. Our approach reduces this time by having the robot model how people infer objectives from observed behavior, and then it selects those behaviors that are maximally informative. The problem of computing a posterior over objectives from observed behavior is known as Inverse Reinforcement Learning (IRL), and has been applied to robots learning human objectives. We consider the problem where the roles of human and robot are swapped. Our main contribution is to recognize that unlike robots, humans will not be exact in their IRL inference. We thus introduce two factors to define candidate approximate-inference models for human learning in this setting, and analyze them in a user study in the autonomous driving domain. We show that certain approximate-inference models lead to the robot generating example behaviors that better enable users to anticipate what it will do in novel situations. Our results also suggest, however, that additional research is needed in modeling how humans extrapolate from examples of robot behavior.Comment: RSS 201
    • …
    corecore