5 research outputs found

    Dynamic Frequency Scaling with Buffer Insertion for Mixed Workloads

    No full text
    This paper presents a method to reduce the energy of interactive systems for mixed workloads: multimedia applications that require constant output rates and sporadic jobs that need prompt responses. The authors' method divides multimedia programs into stages and inserts data buffers between them. Data buffering has three purposes: 1) to support constant output rates; 2) to allow frequency scaling for energy reduction; and 3) to shorten the response times of sporadic jobs. The authors construct frequency-assignment graphs. Each vertex represents the current state of the buffers and the frequencies of the processor. The authors develop an efficient graph-walk algorithm that assigns frequencies to reduce energy. The same method can be applied to perform voltage scaling and the combination of frequency and voltage scaling. The authors' experimental results on a StrongARM -based computer show that four discrete frequencies are sufficient to achieve nearly maximum energy saving. The method reduces the power consumption of an MPEG program by 46%. The authors also demonstrate a case that shortens the response time of a sporadic job by 55%

    Dynamic frequency scaling with buffer insertion for mixed workloads

    No full text

    Key distribution and distributed intrusion detection system in wireless sensor network

    Get PDF
    This thesis proposes a security solution in key management and Intrusion Detection System (IDS) for wireless sensor networks. It addresses challenges of designing in energy and security requirement. Since wireless communication consumes the most energy in sensor network, transmissions must be used efficiently. We propose Hint Key Distribution (HKD) for key management and Adaptive IDS for distributing activated IDS nodes and cooperative operation of these two protocols. HKD protocol focuses on the challenges of energy, computation and security. It uses a hint message and key chain to consume less energy while self-generating key can secure the secret key. It is a proposed solution to key distribution in sensor networks. Adaptive IDS uses threshold and voting algorithm to distribute IDS through the network. An elected node is activated IDS to monitor its network and neighbors. A threshold is used as a solution to reduce number of repeated activations of the same node. We attempt to distribute the energy use equally across the network. In a cooperative protocol, HKD and Adaptive IDS exchange information in order to adjust to the current situation. The level of alert controls the nature of the interaction between the two protocols

    Perception-aware low-power audio processing techniques for portable devices

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore