5 research outputs found

    A measurement-based congestion alarm for self-similar traffic

    Get PDF
    Self-similar traffic is distinguished by positive correlation, which can be exploited for better traffic management. Inspired by measurement-based admission control schemes, a measurement-based congestion alarm is proposed. The aggregate traffic at an output port of a switch or router in a high-speed network is modeled by a fractional Gaussian noise process. Traffic measurements are performed in regular time intervals to determine the current traffic loading. This information is then used to predict the loading situation in the near future. If congestion is likely to occur, a congestion alarm is set off and appropriate network management functions taken to alleviate the possible congestion. The above constitutes a closed loop feedback control mechanism that maintains high resource utilization. Simulation results show that the proposed scheme, when used with dynamic bandwidth allocation, reduces bandwidth requirements by more than 20%.published_or_final_versio

    Reduction of bandwidth requirement by traffic dispersion in ATM networks

    Get PDF
    The problem of bandwidth allocation and routing in Virtual Path (VP) based Asynchronous Transfer Mode (ATM) networks was studied. As an efficient way to facilitate the network management, VP concept has been proposed in the literature. Traffic control and resource management are simplified in VP based networks. However, a priori reservation of resources for VP\u27s also reduces the statistical multiplexing gain, resulting in increased Call Blocking Probability (CBP);The focus of this study is on how to reduce CBP (or equivalently, how to improve the bandwidth utilization for a given CBP requirement) by the effective bandwidth allocation and routing algorithms. Equivalent capacity concept was used to calculate the required bandwidth by the call. Each call was represented as a bursty and heterogeneous multimedia traffic;First, the effect of traffic dispersion was explored to achieve more statistical gain. Through this study, it was discovered how the effect of traffic dispersion varies with different traffic characteristics and the number of paths. An efficient routing algorithm, CED, was designed. Since traffic dispersion requires resequencing and extra signaling to set up multiple VC\u27s, it should be used only when it gives significant benefits. This was the basic idea in our design of CED. The algorithm finds an optimal dispersion factor for a call, where the gain balances the dispersion cost. Simulation study showed that the CBP can be significantly reduced by CED;Next, this study provides analysis of the statistical behavior of the traffic seen by individual VP, as a result of traffic dispersion. This analysis is essential in estimating the required capacity of a VP accurately when both multimedia traffic and traffic dispersion are taken into account. Then analytical models have been formulated. The cost effective design and engineering of VP networks requires accurate and tractable mathematical models which capture the important statistical properties of traffic. This study also revealed that the load distribution estimated by equivalent capacity follows Gaussian distribution which is the sum of two jointly Gaussian random variables. For the analysis of load distribution when CED is used, we simplified multiple paths as identical paths using the idea of Approximation by Single Abstract Path (ASAP), and approximated the characteristics of the traffic seen by individual VP. The developed analytical models and approximations were validated in the sense that they agreed with simulation results

    Wireless Sensor Data Transport, Aggregation and Security

    Get PDF
    abstract: Wireless sensor networks (WSN) and the communication and the security therein have been gaining further prominence in the tech-industry recently, with the emergence of the so called Internet of Things (IoT). The steps from acquiring data and making a reactive decision base on the acquired sensor measurements are complex and requires careful execution of several steps. In many of these steps there are still technological gaps to fill that are due to the fact that several primitives that are desirable in a sensor network environment are bolt on the networks as application layer functionalities, rather than built in them. For several important functionalities that are at the core of IoT architectures we have developed a solution that is analyzed and discussed in the following chapters. The chain of steps from the acquisition of sensor samples until these samples reach a control center or the cloud where the data analytics are performed, starts with the acquisition of the sensor measurements at the correct time and, importantly, synchronously among all sensors deployed. This synchronization has to be network wide, including both the wired core network as well as the wireless edge devices. This thesis studies a decentralized and lightweight solution to synchronize and schedule IoT devices over wireless and wired networks adaptively, with very simple local signaling. Furthermore, measurement results have to be transported and aggregated over the same interface, requiring clever coordination among all nodes, as network resources are shared, keeping scalability and fail-safe operation in mind. Furthermore ensuring the integrity of measurements is a complicated task. On the one hand Cryptography can shield the network from outside attackers and therefore is the first step to take, but due to the volume of sensors must rely on an automated key distribution mechanism. On the other hand cryptography does not protect against exposed keys or inside attackers. One however can exploit statistical properties to detect and identify nodes that send false information and exclude these attacker nodes from the network to avoid data manipulation. Furthermore, if data is supplied by a third party, one can apply automated trust metric for each individual data source to define which data to accept and consider for mentioned statistical tests in the first place. Monitoring the cyber and physical activities of an IoT infrastructure in concert is another topic that is investigated in this thesis.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201
    corecore