2 research outputs found

    SegBlocks: Block-Based Dynamic Resolution Networks for Real-Time Segmentation

    Full text link
    SegBlocks reduces the computational cost of existing neural networks, by dynamically adjusting the processing resolution of image regions based on their complexity. Our method splits an image into blocks and downsamples blocks of low complexity, reducing the number of operations and memory consumption. A lightweight policy network, selecting the complex regions, is trained using reinforcement learning. In addition, we introduce several modules implemented in CUDA to process images in blocks. Most important, our novel BlockPad module prevents the feature discontinuities at block borders of which existing methods suffer, while keeping memory consumption under control. Our experiments on Cityscapes and Mapillary Vistas semantic segmentation show that dynamically processing images offers a better accuracy versus complexity trade-off compared to static baselines of similar complexity. For instance, our method reduces the number of floating-point operations of SwiftNet-RN18 by 60% and increases the inference speed by 50%, with only 0.3% decrease in mIoU accuracy on Cityscapes.Comment: long version, 11 page

    Dynamic Neural Networks: A Survey

    Full text link
    Dynamic neural network is an emerging research topic in deep learning. Compared to static models which have fixed computational graphs and parameters at the inference stage, dynamic networks can adapt their structures or parameters to different inputs, leading to notable advantages in terms of accuracy, computational efficiency, adaptiveness, etc. In this survey, we comprehensively review this rapidly developing area by dividing dynamic networks into three main categories: 1) instance-wise dynamic models that process each instance with data-dependent architectures or parameters; 2) spatial-wise dynamic networks that conduct adaptive computation with respect to different spatial locations of image data and 3) temporal-wise dynamic models that perform adaptive inference along the temporal dimension for sequential data such as videos and texts. The important research problems of dynamic networks, e.g., architecture design, decision making scheme, optimization technique and applications, are reviewed systematically. Finally, we discuss the open problems in this field together with interesting future research directions
    corecore