8,101 research outputs found

    Reducing “Structure from Motion”: a general framework for dynamic vision. 2. Implementation and experimental assessment

    Get PDF
    For pt.1 see ibid., p.933-42 (1998). A number of methods have been proposed in the literature for estimating scene-structure and ego-motion from a sequence of images using dynamical models. Despite the fact that all methods may be derived from a “natural” dynamical model within a unified framework, from an engineering perspective there are a number of trade-offs that lead to different strategies depending upon the applications and the goals one is targeting. We want to characterize and compare the properties of each model such that the engineer may choose the one best suited to the specific application. We analyze the properties of filters derived from each dynamical model under a variety of experimental conditions, assess the accuracy of the estimates, their robustness to measurement noise, sensitivity to initial conditions and visual angle, effects of the bas-relief ambiguity and occlusions, dependence upon the number of image measurements and their sampling rate

    Reducing "Structure From Motion": a General Framework for Dynamic Vision - Part 2: Experimental Evaluation

    Get PDF
    A number of methods have been proposed in the literature for estimating scene-structure and ego-motion from a sequence of images using dynamical models. Although all methods may be derived from a "natural" dynamical model within a unified framework, from an engineering perspective there are a number of trade-offs that lead to different strategies depending upon the specific applications and the goals one is targeting. Which one is the winning strategy? In this paper we analyze the properties of the dynamical models that originate from each strategy under a variety of experimental conditions. For each model we assess the accuracy of the estimates, their robustness to measurement noise, sensitivity to initial conditions and visual angle, effects of the bas-relief ambiguity and occlusions, dependence upon the number of image measurements and their sampling rate

    Reducing "Structure From Motion": a General Framework for Dynamic Vision - Part 1: Modeling

    Get PDF
    The literature on recursive estimation of structure and motion from monocular image sequences comprises a large number of different models and estimation techniques. We propose a framework that allows us to derive and compare all models by following the idea of dynamical system reduction. The "natural" dynamic model, derived by the rigidity constraint and the perspective projection, is first reduced by explicitly decoupling structure (depth) from motion. Then implicit decoupling techniques are explored, which consist of imposing that some function of the unknown parameters is held constant. By appropriately choosing such a function, not only can we account for all models seen so far in the literature, but we can also derive novel ones

    Reducing “Structure from Motion”: a general framework for dynamic vision. 1. Modeling

    Get PDF
    The literature on recursive estimation of structure and motion from monocular image sequences comprises a large number of apparently unrelated models and estimation techniques. We propose a framework that allows us to derive and compare all models by following the idea of dynamical system reduction. The “natural” dynamic model, derived from the rigidity constraint and the projection model, is first reduced by explicitly decoupling structure (depth) from motion. Then, implicit decoupling techniques are explored, which consist of imposing that some function of the unknown parameters is held constant. By appropriately choosing such a function, not only can we account for models seen so far in the literature, but we can also derive novel ones

    Observability/Identifiability of Rigid Motion under Perspective Projection

    Get PDF
    The "visual motion" problem consists of estimating the motion of an object viewed under projection. In this paper we address the feasibility of such a problem. We will show that the model which defines the visual motion problem for feature points in the euclidean 3D space lacks of both linear and local (weak) observability. The locally observable manifold is covered with three levels of lie differentiations. Indeed, by imposing metric constraints on the state-space, it is possible to reduce the set of indistinguishable states. We will then analyze a model for visual motion estimation in terms of identification of an Exterior Differential System, with the parameters living on a topological manifold, called the "essential manifold", which includes explicitly in its definition the forementioned metric constraints. We will show that rigid motion is globally observable/identifiable under perspective projection with zero level of lie differentiation under some general position conditions. Such conditions hold when the viewer does not move on a quadric surface containing all the visible points

    Unsupervised Deep Epipolar Flow for Stationary or Dynamic Scenes

    Full text link
    Unsupervised deep learning for optical flow computation has achieved promising results. Most existing deep-net based methods rely on image brightness consistency and local smoothness constraint to train the networks. Their performance degrades at regions where repetitive textures or occlusions occur. In this paper, we propose Deep Epipolar Flow, an unsupervised optical flow method which incorporates global geometric constraints into network learning. In particular, we investigate multiple ways of enforcing the epipolar constraint in flow estimation. To alleviate a "chicken-and-egg" type of problem encountered in dynamic scenes where multiple motions may be present, we propose a low-rank constraint as well as a union-of-subspaces constraint for training. Experimental results on various benchmarking datasets show that our method achieves competitive performance compared with supervised methods and outperforms state-of-the-art unsupervised deep-learning methods.Comment: CVPR 201

    Robust and Efficient Recovery of Rigid Motion from Subspace Constraints Solved using Recursive Identification of Nonlinear Implicit Systems

    Get PDF
    The problem of estimating rigid motion from projections may be characterized using a nonlinear dynamical system, composed of the rigid motion transformation and the perspective map. The time derivative of the output of such a system, which is also called the "motion field", is bilinear in the motion parameters, and may be used to specify a subspace constraint on either the direction of translation or the inverse depth of the observed points. Estimating motion may then be formulated as an optimization task constrained on such a subspace. Heeger and Jepson [5], who first introduced this constraint, solve the optimization task using an extensive search over the possible directions of translation. We reformulate the optimization problem in a systems theoretic framework as the the identification of a dynamic system in exterior differential form with parameters on a differentiable manifold, and use techniques which pertain to nonlinear estimation and identification theory to perform the optimization task in a principled manner. The general technique for addressing such identification problems [14] has been used successfully in addressing other problems in computational vision [13, 12]. The application of the general method [14] results in a recursive and pseudo-optimal solution of the motion problem, which has robustness properties far superior to other existing techniques we have implemented. By releasing the constraint that the visible points lie in front of the observer, we may explain some psychophysical effects on the nonrigid percept of rigidly moving shapes. Experiments on real and synthetic image sequences show very promising results in terms of robustness, accuracy and computational efficiency

    Dynamic Rigid Motion Estimation From Weak Perspective

    Get PDF
    “Weak perspective” represents a simplified projection model that approximates the imaging process when the scene is viewed under a small viewing angle and its depth relief is small relative to its distance from the viewer. We study how to generate dynamic models for estimating rigid 3D motion from weak perspective. A crucial feature in dynamic visual motion estimation is to decouple structure from motion in the estimation model. The reasons are both geometric-to achieve global observability of the model-and practical, for a structure independent motion estimator allows us to deal with occlusions and appearance of new features in a principled way. It is also possible to push the decoupling even further, and isolate the motion parameters that are affected by the so called “bas relief ambiguity” from the ones that are not. We present a novel method for reducing the order of the estimator by decoupling portions of the state space from the time evolution of the measurement constraint. We use this method to construct an estimator of full rigid motion (modulo a scaling factor) on a six dimensional state space, an approximate estimator for a four dimensional subset of the motion space, and a reduced filter with only two states. The latter two are immune to the bas relief ambiguity. We compare strengths and weaknesses of each of the schemes on real and synthetic image sequences
    • …
    corecore