8,374 research outputs found

    Fast multi-swarm optimization for dynamic optimization problems

    Get PDF
    This article is posted here with permission of IEEE - Copyright @ 2008 IEEEIn the real world, many applications are non-stationary optimization problems. This requires that the optimization algorithms need to not only find the global optimal solution but also track the trajectory of the changing global best solution in a dynamic environment. To achieve this, this paper proposes a multi-swarm algorithm based on fast particle swarm optimization for dynamic optimization problems. The algorithm employs a mechanism to track multiple peaks by preventing overcrowding at a peak and a fast particle swarm optimization algorithm as a local search method to find the near optimal solutions in a local promising region in the search space. The moving peaks benchmark function is used to test the performance of the proposed algorithm. The numerical experimental results show the efficiency of the proposed algorithm for dynamic optimization problems

    Random Finite Set Theory and Optimal Control of Large Collaborative Swarms

    Full text link
    Controlling large swarms of robotic agents has many challenges including, but not limited to, computational complexity due to the number of agents, uncertainty in the functionality of each agent in the swarm, and uncertainty in the swarm's configuration. This work generalizes the swarm state using Random Finite Set (RFS) theory and solves the control problem using Model Predictive Control (MPC) to overcome the aforementioned challenges. Computationally efficient solutions are obtained via the Iterative Linear Quadratic Regulator (ILQR). Information divergence is used to define the distance between the swarm RFS and the desired swarm configuration. Then, a stochastic optimal control problem is formulated using a modified L2^2 distance. Simulation results using MPC and ILQR show that swarm intensities converge to a target destination, and the RFS control formulation can vary in the number of target destinations. ILQR also provides a more computationally efficient solution to the RFS swarm problem when compared to the MPC solution. Lastly, the RFS control solution is applied to a spacecraft relative motion problem showing the viability for this real-world scenario.Comment: arXiv admin note: text overlap with arXiv:1801.0731

    A clustering particle swarm optimizer for dynamic optimization

    Get PDF
    This article is posted here with permission of the IEEE - Copyright @ 2009 IEEEIn the real world, many applications are nonstationary optimization problems. This requires that optimization algorithms need to not only find the global optimal solution but also track the trajectory of the changing global best solution in a dynamic environment. To achieve this, this paper proposes a clustering particle swarm optimizer (CPSO) for dynamic optimization problems. The algorithm employs hierarchical clustering method to track multiple peaks based on a nearest neighbor search strategy. A fast local search method is also proposed to find the near optimal solutions in a local promising region in the search space. Six test problems generated from a generalized dynamic benchmark generator (GDBG) are used to test the performance of the proposed algorithm. The numerical experimental results show the efficiency of the proposed algorithm for locating and tracking multiple optima in dynamic environments.This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) of the United Kingdom under Grant EP/E060722/1

    Chaotic Quantum Double Delta Swarm Algorithm using Chebyshev Maps: Theoretical Foundations, Performance Analyses and Convergence Issues

    Full text link
    Quantum Double Delta Swarm (QDDS) Algorithm is a new metaheuristic algorithm inspired by the convergence mechanism to the center of potential generated within a single well of a spatially co-located double-delta well setup. It mimics the wave nature of candidate positions in solution spaces and draws upon quantum mechanical interpretations much like other quantum-inspired computational intelligence paradigms. In this work, we introduce a Chebyshev map driven chaotic perturbation in the optimization phase of the algorithm to diversify weights placed on contemporary and historical, socially-optimal agents' solutions. We follow this up with a characterization of solution quality on a suite of 23 single-objective functions and carry out a comparative analysis with eight other related nature-inspired approaches. By comparing solution quality and successful runs over dynamic solution ranges, insights about the nature of convergence are obtained. A two-tailed t-test establishes the statistical significance of the solution data whereas Cohen's d and Hedge's g values provide a measure of effect sizes. We trace the trajectory of the fittest pseudo-agent over all function evaluations to comment on the dynamics of the system and prove that the proposed algorithm is theoretically globally convergent under the assumptions adopted for proofs of other closely-related random search algorithms.Comment: 27 pages, 4 figures, 19 table

    A Decentralized Control Framework for Energy-Optimal Goal Assignment and Trajectory Generation

    Full text link
    This paper proposes a decentralized approach for solving the problem of moving a swarm of agents into a desired formation. We propose a decentralized assignment algorithm which prescribes goals to each agent using only local information. The assignment results are then used to generate energy-optimal trajectories for each agent which have guaranteed collision avoidance through safety constraints. We present the conditions for optimality and discuss the robustness of the solution. The efficacy of the proposed approach is validated through a numerical case study to characterize the framework's performance on a set of dynamic goals.Comment: 6 pages, 3 figures, to appear at the 2019 Conference on Decision and Control, Nice, F
    • ā€¦
    corecore