31 research outputs found

    Optimal Spectrum Access for a Rechargeable Cognitive Radio User Based on Energy Buffer State

    Full text link
    This paper investigates the maximum throughput for a rechargeable secondary user (SU) sharing the spectrum with a primary user (PU) plugged to a reliable power supply. The SU maintains a finite energy queue and harvests energy from natural resources, e.g., solar, wind and acoustic noise. We propose a probabilistic access strategy by the SU based on the number of packets at its energy queue. We investigate the effect of the energy arrival rate, the amount of energy per energy packet, and the capacity of the energy queue on the SU throughput under fading channels. Results reveal that the proposed access strategy can enhance the performance of the SU.Comment: arXiv admin note: text overlap with arXiv:1407.726

    Optimal time sharing in underlay cognitive radio systems with RF energy harvesting

    Full text link
    Due to the fundamental tradeoffs, achieving spectrum efficiency and energy efficiency are two contending design challenges for the future wireless networks. However, applying radio-frequency (RF) energy harvesting (EH) in a cognitive radio system could potentially circumvent this tradeoff, resulting in a secondary system with limitless power supply and meaningful achievable information rates. This paper proposes an online solution for the optimal time allocation (time sharing) between the EH phase and the information transmission (IT) phase in an underlay cognitive radio system, which harvests the RF energy originating from the primary system. The proposed online solution maximizes the average achievable rate of the cognitive radio system, subject to the ε\varepsilon-percentile protection criteria for the primary system. The optimal time sharing achieves significant gains compared to equal time allocation between the EH and IT phases.Comment: Proceedings of the 2015 IEEE International Conference on Communications (IEEE ICC 2015), 8-12 June 2015, London, U

    On Spectrum Sharing Between Energy Harvesting Cognitive Radio Users and Primary Users

    Full text link
    This paper investigates the maximum secondary throughput for a rechargeable secondary user (SU) sharing the spectrum with a primary user (PU) plugged to a reliable power supply. The SU maintains a finite energy queue and harvests energy from natural resources and primary radio frequency (RF) transmissions. We propose a power allocation policy at the PU and analyze its effect on the throughput of both the PU and SU. Furthermore, we study the impact of the bursty arrivals at the PU on the energy harvested by the SU from RF transmissions. Moreover, we investigate the impact of the rate of energy harvesting from natural resources on the SU throughput. We assume fading channels and compute exact closed-form expressions for the energy harvested by the SU under fading. Results reveal that the proposed power allocation policy along with the implemented RF energy harvesting at the SU enhance the throughput of both primary and secondary links

    RF-Powered Cognitive Radio Networks: Technical Challenges and Limitations

    Full text link
    The increasing demand for spectral and energy efficient communication networks has spurred a great interest in energy harvesting (EH) cognitive radio networks (CRNs). Such a revolutionary technology represents a paradigm shift in the development of wireless networks, as it can simultaneously enable the efficient use of the available spectrum and the exploitation of radio frequency (RF) energy in order to reduce the reliance on traditional energy sources. This is mainly triggered by the recent advancements in microelectronics that puts forward RF energy harvesting as a plausible technique in the near future. On the other hand, it is suggested that the operation of a network relying on harvested energy needs to be redesigned to allow the network to reliably function in the long term. To this end, the aim of this survey paper is to provide a comprehensive overview of the recent development and the challenges regarding the operation of CRNs powered by RF energy. In addition, the potential open issues that might be considered for the future research are also discussed in this paper.Comment: 8 pages, 2 figures, 1 table, Accepted in IEEE Communications Magazin
    corecore