9 research outputs found

    Causal video object segmentation from persistence of occlusions

    Full text link
    indicated by, , respectively. On the far right, our algorithm correctly infers that the bag strap is in front of the woman’s arm, which is in front of her trunk, which is in front of the background. Project page

    Dynamic shape and appearance modeling via moving and deforming layers

    Get PDF
    ©2008 Springer Science+Business Media. The original publication is available at www.springerlink.comDOI: 10.1007/s11263-007-0097-1This model is based on a collection of overlapping layers that can move and deform, each supporting an intensity function that can change over time. We discuss the generality and limitations of this model in relation to existing ones such as traditional optical flow or motion segmentation, layers, deformable templates and deformotion. We then illustrate how this model can be used for inference of shape, motion, deformation and appearance of the scene from a collection of images. The layering structure allows for automatic inpainting of partially occluded regions. We illustrate the model on synthetic and real sequences where existing schemes fail, and show how suitable choices of constants in the model yield existing schemes, from optical flow to motion segmentation, etc

    Particle filtering on large dimensional state spaces and applications in computer vision

    Get PDF
    Tracking of spatio-temporal events is a fundamental problem in computer vision and signal processing in general. For example, keeping track of motion activities from video sequences for abnormality detection or spotting neuronal activity patterns inside the brain from fMRI data. To that end, our research has two main aspects with equal emphasis - first, development of efficient Bayesian filtering frameworks for solving real-world tracking problems and second, understanding the temporal evolution dynamics of physical systems/phenomenon and build statistical models for them. These models facilitate prior information to the trackers as well as lead to intelligent signal processing for computer vision and image understanding. The first part of the dissertation deals with the key signal processing aspects of tracking and the challenges involved. In simple terms, tracking basically is the problem of estimating the hidden state of a system from noisy observed data(from sensors). As frequently encountered in real-life, due to the non-linear and non-Gaussian nature of the state spaces involved, Particle Filters (PF) give an approximate Bayesian inference under such problem setup. However, quite often we are faced with large dimensional state spaces together with multimodal observation likelihood due to occlusion and clutter. This makes the existing particle filters very inefficient for practical purposes. In order to tackle these issues, we have developed and implemented efficient particle filters on large dimensional state spaces with applications to various visual tracking problems in computer vision. In the second part of the dissertation, we develop dynamical models for motion activities inspired by human visual cognitive ability of characterizing temporal evolution pattern of shapes. We take a landmark shape based approach for the representation and tracking of motion activities. Basically, we have developed statistical models for the shape change of a configuration of ``landmark points (key points of interest) over time and to use these models for automatic landmark extraction and tracking, filtering and change detection from video sequences. In this regard, we demonstrate superior performance of our Non-Stationary Shape Activity(NSSA) model in comparison to other existing works. Also, owing to the large dimensional state space of this problem, we have utilized efficient particle filters(PF) for motion activity tracking. In the third part of the dissertation, we develop a visual tracking algorithm that is able to track in presence of illumination variations in the scene. In order to do that we build and learn a dynamical model for 2D illumination patterns based on Legendre basis functions. Under our problem formulation, we pose the visual tracking task as a large dimensional tracking problem in a joint motion-illumination space and thus use an efficient PF algorithm called PF-MT(PF with Mode Tracker) for tracking. In addition, we also demonstrate the use of change/abnormality detection framework for tracking across drastic illumination changes. Experiments with real-life video sequences demonstrate the usefulness of the algorithm while many other existing approaches fail. The last part of the dissertation explores the upcoming field of compressive sensing and looks into the possibilities of leveraging from particle filtering ideas to do better sequential reconstruction (i.e. tracking) of sparse signals from a small number of random linear measurements. Our preliminary results show several promising aspects to such an approach and it is an interesting direction of future research with many potential computer vision applications

    Multiple Object Tracking with Occlusion Handling

    Get PDF
    Object tracking is an important problem with wide ranging applications. The purpose is to detect object contours and track their motion in a video. Issues of concern are to be able to map objects correctly between two frames, and to be able to track through occlusion. This thesis discusses a novel framework for the purpose of object tracking which is inspired from image registration and segmentation models. Occlusion of objects is also detected and handled in this framework in an appropriate manner. The main idea of our tracking framework is to reconstruct the sequence of images in the video. The process involves deforming all the objects in a given image frame, called the initial frame. Regularization terms are used to govern the deformation of the shape of the objects. We use elastic and viscous fluid model as the regularizer. The reconstructed frame is formed by combining the deformed objects with respect to the depth ordering. The correct reconstruction is selected by parameters that minimize the difference between the reconstruction and the consecutive frame, called the target frame. These parameters provide the required tracking information, such as the contour of the objects in the target frame including the occluded regions. The regularization term restricts the deformation of the object shape in the occluded region and thus gives an estimate of the object shape in this region. The other idea is to use a segmentation model as a measure in place of the frame difference measure. This is separate from image segmentation procedure, since we use the segmentation model in a tracking framework to capture object deformation. Numerical examples are presented to demonstrate tracking in simple and complex scenes, alongwith occlusion handling capability of our model. Segmentation measure is shown to be more robust with regard to accumulation of tracking error
    corecore