3 research outputs found

    Optimal Scheduling Policy Determination for High Speed Downlink Packet Access

    Get PDF
    Abstract β€” In this paper, we present an analytic model and methodology to determine optimal scheduling policy that involves two dimension space allocation: time and code, in High Speed Downlink Packet Access (HSDPA) system. A discrete stochastic dynamic programming model for the HSDPA downlink scheduler is presented. Value iteration is then used to solve for optimal policy. This framework is used to find the optimal scheduling policy for the case of two users sharing the same cell. Simulation is used to study the performance of the resulted optimal policy using Round Robin (RR) scheduler as a baseline. The policy granularity is introduced to reduce the computational complexity by reducing the action space. The results showed that finer granularity (down to 5 codes) enhances the performance significantly. However, the enhancement gained when using even finer granularity was marginal and does not justify the added complexity. The behaviour of the value function was observed to characterize the optimal scheduling policy. These observations is then used to develop a heuristic scheduling policy. The devised heuristic policy has much less computational complexity which makes it easy to deploy and with only slight reduction in performance compared to the optimal policy according to the simulation results. I

    3G Wideband CDMA : packet-based optimisation for high data-rate downlink transmission

    No full text
    A third generation (3G) of mobile communication systems, based on Wideband CDMA, are intended to offer high-speed packet-based services. Network operators wish to maximise the throughput in the downlink of3G systems, which requires efficient allocation ofresources. This thesis considers the problem ofmaximising throughput in an interference dominated channel. Cooperative broadcasting is a theoretical technique to mitigate this problem. Its implementation in practical systems requires efficient resource allocati.on to maximise the thr(oughput whilst meeting system and user-imposed constramts. A resource allocation approach is presented for implementing cooperative broadcasting. Users are paired and a teclmique for allocating resources between the pair is developed. Then, a method for pairing the users is considered. Simulation results are presented, which show a throughput improvement over existing resource allocation approaches. The problem ofcontrolling the distribution ofrandomly arriving data to meet the resource allocation specifications is examined. A single-threshold buffer is proposed, which requires fewer calculations than an existing double-threshold buffer. Simulation results are presented which show a throughput improvement may be realised, greater than that which would achievable using other rate control schemes. Cooperative broadcasting may lead to transmissions to some users being allocated low power. When full channel infonnation is available at the transmitter, a water filling solution may be used to maximise capacity. However, when combined with buffer management, erasure may result. This erasure may be overcome using an erasure protection code. Such a code is examined. When combined with Turbo coding, ajoint detector may be used for providing error and erasure protection. Analysis ofthis detector shows a lower limit on the error rate, dependent on the probability of erasure. Simulation results show that using this approach the error rate is significantly improved. This code can then be used to increase capacity, whilst achieving low error rates.Imperial Users onl
    corecore