1,228 research outputs found

    Transparent Dynamic reconfiguration for CORBA

    Get PDF
    Distributed systems with high availability requirements have to support some form of dynamic reconfiguration. This means that they must provide the ability to be maintained or upgraded without being taken off-line. Building a distributed system that allows dynamic reconfiguration is very intrusive to the overall design of the system, and generally requires special skills from both the client and server side application developers. There is an opportunity to provide support for dynamic reconfiguration at the object middleware level of distributed systems, and create a dynamic reconfiguration transparency to application developers. We propose a Dynamic Reconfiguration Service for CORBA that allows the reconfiguration of a running system with maximum transparency for both client and server side developers. We describe the architecture, a prototype implementation, and some preliminary test result

    Platform-independent Dynamic Reconfiguration of Distributed Applications

    Get PDF
    The aim of dynamic reconfiguration is to allow a system to evolve incrementally from one configuration to another at run-time, without restarting it or taking it offline. In recent years, support for transparent dynamic reconfiguration has been added to middleware platforms, shifting the complexity required to enable dynamic reconfiguration to the supporting infrastructure. These approaches to dynamic reconfiguration are mostly platform-specific and depend on particular implementation approaches suitable for particular platforms. In this paper, we propose an approach to dynamic reconfiguration of distributed applications that is suitable for application implemented on top of different platforms. This approach supports a platform-independent view of an application that profits from reconfiguration transparency. In this view, requirements on the ability to reconfigure components are expressed in an abstract manner. These requirements are then satisfied by platform-specific realizations

    Dynamic reconfiguration for middleware-based applications

    Get PDF
    Distributed systems with high availability requirements have to allow reconfiguration of the system without being taken off-line. Examples of reconfigurations are the replacement of a component with a newer version, or the migration of a component to another node. A key issue for reconfiguration is maintaining the correctness of the system, which can be very complex due to the number of components, unclear relations between components, heterogeneity in operating systems and programming languages, and physical distribution of components. In this paper, we describe a new approach for dynamic reconfiguration of middleware-based applications that is more transparent for the application developer than existing approaches. We compare our approach with other approaches, and describe a prototype that implements our approach for CORBA-based applications

    Introduction to the special section on dependable network computing

    Get PDF
    Dependable network computing is becoming a key part of our daily economic and social life. Every day, millions of users and businesses are utilizing the Internet infrastructure for real-time electronic commerce transactions, scheduling important events, and building relationships. While network traffic and the number of users are rapidly growing, the mean-time between failures (MTTF) is surprisingly short; according to recent studies, in the majority of Internet backbone paths, the MTTF is 28 days. This leads to a strong requirement for highly dependable networks, servers, and software systems. The challenge is to build interconnected systems, based on available technology, that are inexpensive, accessible, scalable, and dependable. This special section provides insights into a number of these exciting challenges

    Monitoring extensions for component-based distributed software

    Get PDF
    This paper defines a generic class of monitoring extensions to component-based distributed enterprise software. Introducing a monitoring extension to a legacy application system can be very costly. In this paper, we identify the minimum support for application monitoring within the generic components of a distributed system, necessary for rapid development of new monitoring extensions. Furthermore, this paper offers an approach for design and implementation of monitoring extensions at reduced cost. A framework of basic facilities supporting the monitoring extensions is presented. These facilities handle different aspects critical to the monitoring process, such as ordering of the generated monitoring events, decoupling of the application components from the components of the monitoring extensions, delivery of the monitoring events to multiple consumers, etc.\ud The work presented in this paper is being validated in the prototype of a large distributed system, where a specific monitoring extension is built as a tool for debugging and testing the application behaviour.\u

    On the Notion of Abstract Platform in MDA Development

    Get PDF
    Although platform-independence is a central property in MDA models, the study of platform-independence has been largely overlooked in MDA. As a consequence, there is a lack of guidelines to select abstraction criteria and modelling concepts for platform-independent design. In addition, there is little methodological support to distinguish between platform-independent and platform-specific concerns, which could be detrimental to the beneficial exploitation of the PIM-PSM separation-of-concerns adopted by MDA. This work is an attempt towards clarifying the notion of platform-independent modelling in MDA development. We argue that each level of platform-independence must be accompanied by the identification of an abstract platform. An abstract platform is determined by the platform characteristics that are relevant for applications at a certain level of platform-independence, and must be established by balancing various design goals. We present some methodological principles for abstract platform design, which forms a basis for defining requirements for design languages intended to support platform-independent design. Since our methodological framework is based on the notion of abstract platform, we pay particular attention to the definition of abstract platforms and the language requirements to specify abstract platforms. We discuss how the concept of abstract platform relates to UML

    The SATIN component system - a metamodel for engineering adaptable mobile systems

    Get PDF
    Mobile computing devices, such as personal digital assistants and mobile phones, are becoming increasingly popular, smaller, and more capable. We argue that mobile systems should be able to adapt to changing requirements and execution environments. Adaptation requires the ability-to reconfigure the deployed code base on a mobile device. Such reconfiguration is considerably simplified if mobile applications are component-oriented rather than monolithic blocks of code. We present the SATIN (system adaptation targeting integrated networks) component metamodel, a lightweight local component metamodel that offers the flexible use of logical mobility primitives to reconfigure the software system by dynamically transferring code. The metamodel is implemented in the SATIN middleware system, a component-based mobile computing middleware that uses the mobility primitives defined in the metamodel to reconfigure both itself and applications that it hosts. We demonstrate the suitability of SATIN in terms of lightweightedness, flexibility, and reusability for the creation of adaptable mobile systems by using it to implement, port, and evaluate a number of existing and new applications, including an active network platform developed for satellite communication at the European space agency. These applications exhibit different aspects of adaptation and demonstrate the flexibility of the approach and the advantages gaine
    • …
    corecore