12,429 research outputs found

    Mobile Communications Industry Scenarios and Strategic Implications for Network Equipment Vendors

    Get PDF
    Mobile infrastructure markets have changed dramatically during the past years. The industry is experiencing a shift from traditional large-scale, hardware-driven system roll-outs to software and services -driven business models. Also, the telecommunications and internet worlds are colliding in both mobile infrastructure and services domains requiring established network equipment vendors and mobile operators to transform and adapt to the new business environment. This paper utilizes Schoemaker's scenario planning process to reveal critical uncertain elements shaping the future of the industry. Four possible scenarios representing different value systems between industry's key stakeholders are created. After this, five strategic options with differing risk and cost factors for established network equipment vendors are discussed in order to aid firm's strategic planning process. --

    The emergence of markets and capabilities, dynamic transaction costs and institutions: effects on organizational choices in offshored and outsourced business services in China

    Get PDF
    This paper has three aims: 1) to use Langlois’ framework of dynamic transaction costs to illustrate the coevolution of firm capabilities and the emergence of new markets for offshored and outsourced business services in China; 2) to use Coase’s institutional structure of production framework to analyse the influence of Chinese institutions on the organizational choices made in the offshoring and outsourcing of business services in China and 3) to link the two themes and understand the interaction between Chinese institutions and the emergence of markets and capabilities in business services in China. We use case studies and interview data to look at these issues.offshoring, China, business services, institutions, dynamic transactions costs

    Managing Shared Access to a Spectrum Commons

    Get PDF
    The open access, unlicensed or spectrum commons approach to managing shared access to RF spectrum offers many attractive benefits, especially when implemented in conjunction with and as a complement to a regime of marketbased, flexible use, tradable licensed spectrum ([Benkler02], [Lehr04], [Werbach03]). However, as a number of critics have pointed out, implementing the unlicensed model poses difficult challenges that have not been well-addressed yet by commons advocates ([Benjam03], [Faulhab05], [Goodman04], [Hazlett01]). A successful spectrum commons will not be unregulated, but it also need not be command & control by another name. This paper seeks to address some of the implementation challenges associated with managing a spectrum commons. We focus on the minimal set of features that we believe a suitable management protocol, etiquette, or framework for a spectrum commons will need to incorporate. This includes: (1) No transmit only devices; (2) Power restrictions; (3) Common channel signaling; (4) Mechanism for handling congestion and allocating resources among users/uses in times of congestion; (5) Mechanism to support enforcement (e.g., established procedures to verify protocol is in conformance); (6) Mechanism to support reversibility of policy; and (7) Protection for privacy and security. We explain why each is necessary, examine their implications for current policy, and suggest ways in which they might be implemented. We present a framework that suggests a set of design principles for the protocols that will govern a successful commons management regime. Our design rules lead us to conclude that the appropriate Protocols for a Commons will need to be more liquid ([Reed05]) than in the past: (1) Marketbased instead of C&C; (2) Decentralized/distributed; and, (3) Adaptive and flexible (Anonymous, distributed, decentralized, and locally responsive)

    Resource Allocation and Service Management in Next Generation 5G Wireless Networks

    Get PDF
    The accelerated evolution towards next generation networks is expected to dramatically increase mobile data traffic, posing challenging requirements for future radio cellular communications. User connections are multiplying, whilst data hungry content is dominating wireless services putting significant pressure on network's available spectrum. Ensuring energy-efficient and low latency transmissions, while maintaining advanced Quality of Service (QoS) and high standards of user experience are of profound importance in order to address diversifying user prerequisites and ensure superior and sustainable network performance. At the same time, the rise of 5G networks and the Internet of Things (IoT) evolution is transforming wireless infrastructure towards enhanced heterogeneity, multi-tier architectures and standards, as well as new disruptive telecommunication technologies. The above developments require a rethinking of how wireless networks are designed and operate, in conjunction with the need to understand more holistically how users interact with the network and with each other. In this dissertation, we tackle the problem of efficient resource allocation and service management in various network topologies under a user-centric approach. In the direction of ad-hoc and self-organizing networks where the decision making process lies at the user level, we develop a novel and generic enough framework capable of solving a wide array of problems with regards to resource distribution in an adaptable and multi-disciplinary manner. Aiming at maximizing user satisfaction and also achieve high performance - low power resource utilization, the theory of network utility maximization is adopted, with the examined problems being formulated as non-cooperative games. The considered games are solved via the principles of Game Theory and Optimization, while iterative and low complexity algorithms establish their convergence to steady operational outcomes, i.e., Nash Equilibrium points. This thesis consists a meaningful contribution to the current state of the art research in the field of wireless network optimization, by allowing users to control multiple degrees of freedom with regards to their transmission, considering mobile customers and their strategies as the key elements for the amelioration of network's performance, while also adopting novel technologies in the resource management problems. First, multi-variable resource allocation problems are studied for multi-tier architectures with the use of femtocells, addressing the topic of efficient power and/or rate control, while also the topic is examined in Visible Light Communication (VLC) networks under various access technologies. Next, the problem of customized resource pricing is considered as a separate and bounded resource to be optimized under distinct scenarios, which expresses users' willingness to pay instead of being commonly implemented by a central administrator in the form of penalties. The investigation is further expanded by examining the case of service provider selection in competitive telecommunication markets which aim to increase their market share by applying different pricing policies, while the users model the selection process by behaving as learning automata under a Machine Learning framework. Additionally, the problem of resource allocation is examined for heterogeneous services where users are enabled to dynamically pick the modules needed for their transmission based on their preferences, via the concept of Service Bundling. Moreover, in this thesis we examine the correlation of users' energy requirements with their transmission needs, by allowing the adaptive energy harvesting to reflect the consumed power in the subsequent information transmission in Wireless Powered Communication Networks (WPCNs). Furthermore, in this thesis a fresh perspective with respect to resource allocation is provided assuming real life conditions, by modeling user behavior under Prospect Theory. Subjectivity in decisions of users is introduced in situations of high uncertainty in a more pragmatic manner compared to the literature, where they behave as blind utility maximizers. In addition, network spectrum is considered as a fragile resource which might collapse if over-exploited under the principles of the Tragedy of the Commons, allowing hence users to sense risk and redefine their strategies accordingly. The above framework is applied in different cases where users have to select between a safe and a common pool of resources (CPR) i.e., licensed and unlicensed bands, different access technologies, etc., while also the impact of pricing in protecting resource fragility is studied. Additionally, the above resource allocation problems are expanded in Public Safety Networks (PSNs) assisted by Unmanned Aerial Vehicles (UAVs), while also aspects related to network security against malign user behaviors are examined. Finally, all the above problems are thoroughly evaluated and tested via a series of arithmetic simulations with regards to the main characteristics of their operation, as well as against other approaches from the literature. In each case, important performance gains are identified with respect to the overall energy savings and increased spectrum utilization, while also the advantages of the proposed framework are mirrored in the improvement of the satisfaction and the superior Quality of Service of each user within the network. Lastly, the flexibility and scalability of this work allow for interesting applications in other domains related to resource allocation in wireless networks and beyond

    Governing the Networks of the Information Society. Prospects and limits of policy in a complex technical system

    Get PDF
    This paper examines the prospects and limits of policies towards information and communications technologies (ICTs). The co-evolution of technological, economic, and political factors that has affected the information network infrastructure during the past three decades has transformed it from a relatively closed to more open system. As a consequence, the degree of complexity of the ICT infrastructure has increased with far-reaching implications for its governance. Paradoxically, policy was better able to control important performance characteristics, such as prices or investment levels, during the past monopoly era. However, the ability to control came at the high price of the inefficiencies associated with monopoly organization. In the present more competitive framework, many feasible policy instruments only work indirectly. Sector performance is an emergent property resulting from decentralized decisions in markets. It is influenced but not fully determined by policy choices. These changes need to be recognized more explicitly in the theoretical foundations, the formation and the implementation of policy. Applying concepts from the theory of complex evolving systems, the paper develops lessons for the design of effective information and communications policy.Information and communication technology, governance, complexity, incomplete information, institutions, feasible policy
    • 

    corecore