2 research outputs found

    Technical Report: Voltage Source Converter MPC with Optimized Pulse Patterns and minimization of Integrated Squared Tracking Error

    Get PDF
    Model predictive control schemes for power electronic applications are characterized by a great variety of problem formulations. In this paper, we consider a three phase voltage source converter with an arbitrary number of voltage levels and derive a model predictive control scheme involving a combination of optimized pulse patterns and the integral of squared predicted tracking error as a cost function. We obtain a nonlinear optimization problem with the switching times as optimization variables, and solve it using gradient projection algorithm. To obtain an easier optimization problem to be solved on-line, a linearization around nominal switching instants is performed bringing the problem to a quadratic programming form. Simulation results demonstrating the performance of the derived scheme are provided for the case of a grid-tied converter with LCL filter

    Reduced-order models of series resonant inverters in induction heating applications

    Get PDF
    From the controller design framework, a simple analytical model that captures the dominant behavior in the range of interest is the optimal. When modeling resonant circuits, complex mathematical models are obtained. These high-order models are not the most suitable for controller design. Although some assumptions can be made for simplifying these models, variable frequency operation or load uncertainty can make these premises no longer valid. In this work, a systematic modeling order reduction technique, Slowly Varying Amplitude and Phase (SVAP), is considered for obtaining simpler analytical models of resonant inverters. SVAP gives identical results as the classical model-order residualization technique from automatic control theory. A slight modification of SVAP, Slowly Varying Amplitude Derivative and Phase (SVADP) is applied in this paper to obtain a better validity range. SVADP is validated for a half-bridge series resonant inverter (HBSRI) and for a high- order plant, a dual-half bridge series resonant inverter (DHBSRI) giving analytical second-order transfer functions for both topologies. Simulation and experimental results are provided to show the validity range of the reduced-order models
    corecore