22,791 research outputs found

    Dynamic Packet Scheduling in Wireless Networks

    Full text link
    We consider protocols that serve communication requests arising over time in a wireless network that is subject to interference. Unlike previous approaches, we take the geometry of the network and power control into account, both allowing to increase the network's performance significantly. We introduce a stochastic and an adversarial model to bound the packet injection. Although taken as the primary motivation, this approach is not only suitable for models based on the signal-to-interference-plus-noise ratio (SINR). It also covers virtually all other common interference models, for example the multiple-access channel, the radio-network model, the protocol model, and distance-2 matching. Packet-routing networks allowing each edge or each node to transmit or receive one packet at a time can be modeled as well. Starting from algorithms for the respective scheduling problem with static transmission requests, we build distributed stable protocols. This is more involved than in previous, similar approaches because the algorithms we consider do not necessarily scale linearly when scaling the input instance. We can guarantee a throughput that is as large as the one of the original static algorithm. In particular, for SINR models the competitive ratios of the protocol in comparison to optimal ones in the respective model are between constant and O(log^2 m) for a network of size m.Comment: 23 page

    Dynamic Secure-Aware Real Time Scheduling Algorithm for Packet Switched Network

    Get PDF
    Now a day wireless networks are mostly preferred over wired networks because wireless networks are flexible and required no wire. If we talk about successful communication then end to end delivery of message is very important. In a heavy loaded networks scheduling of packets are key, by the proper scheduling of packets we can improve the guarantee ratio hence overall performance of the network is improved. If we focus on real time communication then real time packet scheduling plays an important role for enhance the performance of the system. In any network security plays a vital role, to protect the data from intruder and many security threats proper security of data is very important. So we can say that overall performance of the system is a combination of security and scheduling. In this paper we talk about real time packet scheduling in wireless networks. Here we use Dynamic Secure-Aware Real-Time Scheduling Algorithm for Packet Switched Network [DSASA]. This is a dynamic real time packet scheduling technique which reduce packets drop, increase guarantee ratio of data traffic and provide security for data packets

    QoS driven distributed multi-channel scheduling MAC protocol for multihop WSNs

    Get PDF
    Multi-Channel Dynamic Scheduling has been centric stage of research in WSNs in recent years. In this paper, we propose a Distributed Multi-Channel Scheduling MAC communication protocol (DMS-MAC) to improve the network performance of WSNs, which selects the best channel for an individual wireless sensor node. DMS-MAC supports dynamic channel assignment mechanism where each sensor node is equipped with a directional antennas. The proposed protocol helps to decrease the probability of collision, interferences and improves the overall network performance of Wireless Sensor Networks (WSNs). The protocol is most suitable for short packet transmission under low traffic networks and has ability to utilize parallel transmission among neighboring nodes and achieves increased energy efficiency when multi-channels are available. Simulation result shows that the proposed protocol improves the performance of aggregate throughput, probability of successful transmission, packet delivery ratio, energy consumption and average end-to-end delay

    Dynamic channel selection for multi-user video streaming over cognitive radio networks

    Full text link
    Due to the dynamic nature of cognitive radio networks, multi-user video streaming (with various video traffic characteristics and QoS requirements) requires efficient dynamic channel selection schemes to exploit available spectrum resources. To do this, a wireless user needs to effectively model the dynamic wireless environment and estimate the delay of video packet transmission when selecting a specific frequency channel. In this paper, we apply the priority virtual queue model for these wireless users to adapt their channel selection and maximize video qualities. The simulation results show that the proposed channel selection solution based on priority scheduling outperforms the conventional dynamic channel selection scheme by 2 dB (PSNR). Index Terms — Video streaming, cognitive radio networks, priority queuing analysis

    Towards a Queueing-Based Framework for In-Network Function Computation

    Full text link
    We seek to develop network algorithms for function computation in sensor networks. Specifically, we want dynamic joint aggregation, routing, and scheduling algorithms that have analytically provable performance benefits due to in-network computation as compared to simple data forwarding. To this end, we define a class of functions, the Fully-Multiplexible functions, which includes several functions such as parity, MAX, and k th -order statistics. For such functions we exactly characterize the maximum achievable refresh rate of the network in terms of an underlying graph primitive, the min-mincut. In acyclic wireline networks, we show that the maximum refresh rate is achievable by a simple algorithm that is dynamic, distributed, and only dependent on local information. In the case of wireless networks, we provide a MaxWeight-like algorithm with dynamic flow splitting, which is shown to be throughput-optimal

    Wireless Power Transfer and Data Collection in Wireless Sensor Networks

    Full text link
    In a rechargeable wireless sensor network, the data packets are generated by sensor nodes at a specific data rate, and transmitted to a base station. Moreover, the base station transfers power to the nodes by using Wireless Power Transfer (WPT) to extend their battery life. However, inadequately scheduling WPT and data collection causes some of the nodes to drain their battery and have their data buffer overflow, while the other nodes waste their harvested energy, which is more than they need to transmit their packets. In this paper, we investigate a novel optimal scheduling strategy, called EHMDP, aiming to minimize data packet loss from a network of sensor nodes in terms of the nodes' energy consumption and data queue state information. The scheduling problem is first formulated by a centralized MDP model, assuming that the complete states of each node are well known by the base station. This presents the upper bound of the data that can be collected in a rechargeable wireless sensor network. Next, we relax the assumption of the availability of full state information so that the data transmission and WPT can be semi-decentralized. The simulation results show that, in terms of network throughput and packet loss rate, the proposed algorithm significantly improves the network performance.Comment: 30 pages, 8 figures, accepted to IEEE Transactions on Vehicular Technolog

    Providing End-to-End Delay Guarantees for Multi-hop Wireless Sensor Networks over Unreliable Channels

    Full text link
    Wireless sensor networks have been increasingly used for real-time surveillance over large areas. In such applications, it is important to support end-to-end delay constraints for packet deliveries even when the corresponding flows require multi-hop transmissions. In addition to delay constraints, each flow of real-time surveillance may require some guarantees on throughput of packets that meet the delay constraints. Further, as wireless sensor networks are usually deployed in challenging environments, it is important to specifically consider the effects of unreliable wireless transmissions. In this paper, we study the problem of providing end-to-end delay guarantees for multi-hop wireless networks. We propose a model that jointly considers the end-to-end delay constraints and throughput requirements of flows, the need for multi-hop transmissions, and the unreliable nature of wireless transmissions. We develop a framework for designing feasibility-optimal policies. We then demonstrate the utility of this framework by considering two types of systems: one where sensors are equipped with full-duplex radios, and the other where sensors are equipped with half-duplex radios. When sensors are equipped with full-duplex radios, we propose an online distributed scheduling policy and proves the policy is feasibility-optimal. We also provide a heuristic for systems where sensors are equipped with half-duplex radios. We show that this heuristic is still feasibility-optimal for some topologies
    • …
    corecore