40 research outputs found

    Stable Real-Time Feedback Control of a Pneumatic Soft Robot

    Full text link
    Soft actuators offer compliant and safe interaction with an unstructured environment compared to their rigid counterparts. However, control of these systems is often challenging because they are inherently under-actuated, have infinite degrees of freedom (DoF), and their mechanical properties can change by unknown external loads. Existing works mainly relied on discretization and reduction, suffering from either low accuracy or high computational cost for real-time control purposes. Recently, we presented an infinite-dimensional feedback controller for soft manipulators modeled by partial differential equations (PDEs) based on the Cosserat rod theory. In this study, we examine how to implement this controller in real-time using only a limited number of actuators. To do so, we formulate a convex quadratic programming problem that tunes the feedback gains of the controller in real time such that it becomes realizable by the actuators. We evaluated the controller's performance through experiments on a physical soft robot capable of planar motions and show that the actual controller implemented by the finite-dimensional actuators still preserves the stabilizing property of the desired infinite-dimensional controller. This research fills the gap between the infinite-dimensional control design and finite-dimensional actuation in practice and suggests a promising direction for exploring PDE-based control design for soft robots

    PDE-based Dynamic Control and Estimation of Soft Robotic Arms

    Full text link
    Compared with traditional rigid-body robots, soft robots not only exhibit unprecedented adaptation and flexibility but also present novel challenges in their modeling and control because of their infinite degrees of freedom. Most of the existing approaches have mainly relied on approximated models so that the well-developed finite-dimensional control theory can be exploited. However, this may bring in modeling uncertainty and performance degradation. Hence, we propose to exploit infinite-dimensional analysis for soft robotic systems. Our control design is based on the increasingly adopted Cosserat rod model, which describes the kinematics and dynamics of soft robotic arms using nonlinear partial differential equations (PDE). We design infinite-dimensional state feedback control laws for the Cosserat PDE model to achieve trajectory tracking (consisting of position, rotation, linear and angular velocities) and prove their uniform tracking convergence. We also design an infinite-dimensional extended Kalman filter on Lie groups for the PDE system to estimate all the state variables (including position, rotation, strains, curvature, linear and angular velocities) using only position measurements. The proposed algorithms are evaluated using simulations

    Multi-modal Sensor Fusion for Learning Rich Models for Interacting Soft Robots

    Get PDF
    Soft robots are typically approximated as low-dimensional systems, especially when learning-based methods are used. This leads to models that are limited in their capability to predict the large number of deformation modes and interactions that a soft robot can have. In this work, we present a deep-learning methodology to learn high-dimensional visual models of a soft robot combining multimodal sensorimotor information. The models are learned in an end-to-end fashion, thereby requiring no intermediate sensor processing or grounding of data. The capabilities and advantages of such a modelling approach are shown on a soft anthropomorphic finger with embedded soft sensors. We also show that how such an approach can be extended to develop higher level cognitive functions like identification of the self and the external environment and acquiring object manipulation skills. This work is a step towards the integration of soft robotics and developmental robotics architectures to create the next generation of intelligent soft robots

    Static kinematics for an antagonistically actuated robot based on a beam-mechanics-based model

    Get PDF
    Soft robotic structures might play a major role in the 4th industrial revolution. Researchers have successfully demonstrated advantages of soft robotics over traditional robots made of rigid links and joints in several application areas including manufacturing, healthcare and surgical interventions. However, soft robots have limited ability to exert higher forces when it comes to interaction with the environment, hence, change their stiffness on demand over a wide range. One stiffness mechanism embodies tendon-driven and pneumatic air actuation in an antagonistic way achieving variable stiffness values. In this paper, we apply a beammechanics-based model to this type of soft stiffness controllable robot. This mathematical model takes into account the various stiffness levels of the soft robotic manipulator as well as interaction forces with the environment at the tip of the manipulator. The analytical model is implemented into a robotic actuation system made of motorised linear rails with load cells (obtaining applied forces to the tendons) and a pressure regulator. Here, we present and analyse the performance and limitations of our model

    Discrete Cosserat Approach for Multi-Section Soft Robots Dynamics

    Full text link
    In spite of recent progress, soft robotics still suffers from a lack of unified modeling framework. Nowadays, the most adopted model for the design and control of soft robots is the piece-wise constant curvature model, with its consolidated benefits and drawbacks. In this work, an alternative model for multisection soft robots dynamics is presented based on a discrete Cosserat approach, which, not only takes into account shear and torsional deformations, essentials to cope with out-of-plane external loads, but also inherits the geometrical and mechanical properties of the continuous Cosserat model, making it the natural soft robotics counterpart of the traditional rigid robotics dynamics model. The soundness of the model is demonstrated through extensive simulation and experimental results for both plane and out-of-plane motions.Comment: 13 pages, 9 figure

    Estimating Infinite-Dimensional Continuum Robot States From the Tip

    Full text link
    Knowing the state of a robot is critical for many problems, such as feedback control. For continuum robots, state estimation is incredibly challenging. First, the motion of a continuum robot involves many kinematic states, including poses, strains, and velocities. Second, all these states are infinite-dimensional due to the robot's flexible property. It has remained unclear whether these infinite-dimensional states are observable at all using existing sensing techniques. Recently, we presented a solution to this challenge. It was a mechanics-based dynamic state estimation algorithm, called a Cosserat theoretic boundary observer, which could recover all the infinite-dimensional robot states by only measuring the velocity twist of the tip. In this work, we generalize the algorithm to incorporate tip pose measurements for more tuning freedom. We also validate this algorithm offline using recorded experimental data of a tendon-driven continuum robot. Specifically, we feed the recorded tension of the tendon and the recorded tip measurements into a numerical solver of the Cosserat rod model based on our continuum robot. It is observed that, even with purposely deviated initialization, the state estimates by our algorithm quickly converge to the recorded ground truth states and closely follow the robot's actual motion

    Forward dynamics of continuum and soft robots: a strain parametrization based approach

    Get PDF
    soumis Ă  IEEE TROIn this article we propose a new solution to the forward dynamics of Cosserat beams with in perspective, its application to continuum and soft robotics manipulation and locomotion. In contrast to usual approaches, it is based on the non-linear parametrization of the beam shape by its strain fields and their discretization on a functional basis of strain modes. While remaining geometrically exact, the approach provides a minimal set of ordinary differential equations in the usual Lagrange matrix form that can be solved with standard explicit time-integrators. Inspired from rigid robotics, the calculation of the matrices of the Lagrange model is performed with a continuous inverse Newton-Euler algorithm. The approach is tested on several numerical benches of non-linear structural statics, as well as further examples illustrating its capabilities for dynamics

    A Novel and Accurate BiLSTM Configuration Controller for Modular Soft Robots with Module Number Adaptability

    Full text link
    Modular soft robots have shown higher potential in sophisticated tasks than single-module robots. However, the modular structure incurs the complexity of accurate control and necessitates a control strategy specifically for modular robots. In this paper, we introduce a data collection strategy and a novel and accurate bidirectional LSTM configuration controller for modular soft robots with module number adaptability. Such a controller can control module configurations in robots with different module numbers. Simulation cable-driven robots and real pneumatic robots have been included in experiments to validate the proposed approaches, and we have proven that our controller can be leveraged even with the increase or decrease of module number. This is the first paper that gets inspiration from the physical structure of modular robots and utilizes bidirectional LSTM for module number adaptability. Future work may include a planning method that bridges the task and configuration spaces and the integration of an online controller.Comment: 10 figures, 4 table
    corecore