2,110 research outputs found

    Neural-Network Vector Controller for Permanent-Magnet Synchronous Motor Drives: Simulated and Hardware-Validated Results

    Get PDF
    This paper focuses on current control in a permanentmagnet synchronous motor (PMSM). The paper has two main objectives: The first objective is to develop a neural-network (NN) vector controller to overcome the decoupling inaccuracy problem associated with conventional PI-based vector-control methods. The NN is developed using the full dynamic equation of a PMSM, and trained to implement optimal control based on approximate dynamic programming. The second objective is to evaluate the robust and adaptive performance of the NN controller against that of the conventional standard vector controller under motor parameter variation and dynamic control conditions by (a) simulating the behavior of a PMSM typically used in realistic electric vehicle applications and (b) building an experimental system for hardware validation as well as combined hardware and simulation evaluation. The results demonstrate that the NN controller outperforms conventional vector controllers in both simulation and hardware implementation

    Design and Control of Electrical Motor Drives

    Get PDF
    Dear Colleagues, I am very happy to have this Special Issue of the journal Energies on the topic of Design and Control of Electrical Motor Drives published. Electrical motor drives are widely used in the industry, automation, transportation, and home appliances. Indeed, rolling mills, machine tools, high-speed trains, subway systems, elevators, electric vehicles, air conditioners, all depend on electrical motor drives.However, the production of effective and practical motors and drives requires flexibility in the regulation of current, torque, flux, acceleration, position, and speed. Without proper modeling, drive, and control, these motor drive systems cannot function effectively.To address these issues, we need to focus on the design, modeling, drive, and control of different types of motors, such as induction motors, permanent magnet synchronous motors, brushless DC motors, DC motors, synchronous reluctance motors, switched reluctance motors, flux-switching motors, linear motors, and step motors.Therefore, relevant research topics in this field of study include modeling electrical motor drives, both in transient and in steady-state, and designing control methods based on novel control strategies (e.g., PI controllers, fuzzy logic controllers, neural network controllers, predictive controllers, adaptive controllers, nonlinear controllers, etc.), with particular attention to transient responses, load disturbances, fault tolerance, and multi-motor drive techniques. This Special Issue include original contributions regarding recent developments and ideas in motor design, motor drive, and motor control. The topics include motor design, field-oriented control, torque control, reliability improvement, advanced controllers for motor drive systems, DSP-based sensorless motor drive systems, high-performance motor drive systems, high-efficiency motor drive systems, and practical applications of motor drive systems. I want to sincerely thank authors, reviewers, and staff members for their time and efforts. Prof. Dr. Tian-Hua Liu Guest Edito

    Performance degradation of surface PMSMs with demagnetization defect under predictive current control

    Get PDF
    To control the current of a surface mounted permanent magnet synchronous machine fed by a two-level voltage source inverter, a large variety of control algorithms exists. Each of these controllers performs differently concerning dynamic performance and control- and voltage quality, but also concerning sensitivity to demagnetization faults. Therefore, this paper investigates the performance degradation of three advanced predictive controllers under a partial demagnetization fault. The three predictive controllers are: finite-set model based predictive control, deadbeat control, and a combination of both previous algorithms. To achieve this goal, the three predictive controllers are first compared under healthy conditions, and afterwards under a partial demagnetization fault. A PI controller is added to the comparison in order to provide a model-independent benchmark. Key performance indicators, obtained from both simulations and experimental results on a 4 kW axial flux permanent magnet synchronous machine with yokeless and segmented armature topology, are introduced to enable a quantification of the performance degradation of the controllers under a demagnetization fault. A general conclusion is that the deadbeat controller shows superior control quality, even under partial demagnetization

    Dynamic Performance Analysis of a Five-Phase PMSM Drive Using Model Reference Adaptive System and Enhanced Sliding Mode Observer

    Get PDF
    This paper aims to evaluate the dynamic performance of a five-phase PMSM drive using two different observers: sliding mode (SMO) and model reference adaptive system (MRAS). The design of the vector control for the drive is firstly introduced in details to visualize the proper selection of speed and current controllers’ gains, then the construction of the two observers are presented. The stability check for the two observers are also presented and analyzed, and finally the evaluation results are presented to visualize the features of each sensorless technique and identify the advantages and shortages as well. The obtained results reveal that the de-signed SMO exhibits better performance and enhanced robustness compared with the MRAS under different operating conditions. This fact is approved through the obtained results considering a mismatch in the values of stator resistance and stator inductance as well. Large deviation in the values of estimated speed and rotor position are observed under MRAS, and this is also accompanied with high speed and torque oscillations

    Performance enhancement of direct torque-controlled permanent magnet synchronous motor with a flexible switching table

    Get PDF
    In this paper, a flexible switching table (FST) for direct torque control (DTC) of permanent magnet synchronous motors (PMSMs) was proposed to enhance the steady-state and dynamic performances of the drive system. First, the influence of each converter output voltage vectors on the torque and stator flux deviation rates was analyzed to assess the voltage selection strategies of the conventional STs and their impact on the DTC system’s performance. Then, a new flexible ST was proposed which uses a simple algorithm to adaptively select the appropriate voltage vector for two of its states according to the system operating condition. The effectiveness and feasibility of the proposed FST were verified through a comparative evaluation with the conventional STs using experimental results obtained from a 0.75 kW PMSM drive system

    Deadbeat control based on a multipurpose disturbance observer for permanent magnet synchronous motors

    Full text link
    © The Institution of Engineering and Technology 2018. Robustness against parameter mismatches and position-sensorless operation are two important research topics for permanent magnet synchronous motor (PMSM) drives. Usually, the existing observers are designed for achieving a specific function. While here, both the above two functions are integrated into the proposed sliding-mode disturbance observer: (i) if a position sensor is equipped, accurate current regulation can be achieved by deadbeat predictive current control despite mismatched motor parameters; (ii) if the position sensor is not equipped but with a good estimation of motor parameters, the observer can serve as a back electromotive force estimator. Then, the rotor position can be extracted for position-sensorless control. Usually, a low-pass filter is required to suppress high-frequency noises in the conventional sliding-mode observer. This inevitably leads to phase delay in the estimation. By comparison, a complex coefficient filter is inherently embedded in the proposed method, which can provide accurate estimation without phase delay or magnitude error. Experimental results obtained from a 2.4 kW PMSM drive platform indicate that high-performance current control can be achieved with good robustness for position sensor-based operation. Also, rotor position can be accurately estimated with good steady and dynamic performance for position-sensorless operation

    On the reliability of electrical drives for safety-critical applications

    Get PDF
    The aim of this work is to present some issues related to fault tolerant electric drives,which are able to overcome different types of faults occurring in the sensors, in thepower converter and in the electrical machine, without compromising the overallfunctionality of the system. These features are of utmost importance in safety-criticalapplications. In this paper, the reliability of both commercial and innovative driveconfigurations, which use redundant hardware and suitable control algorithms, will beinvestigated for the most common types of fault: besides standard three phase motordrives, also multiphase topologies, open-end winding solutions, multi-machineconfigurations will be analyzed, applied to various electric motor technologies. Thecomplexity of hardware and control strategies will also be compared in this paper, sincethis has a tremendous impact on the investment costs

    TECHNIQUE OF CONTROL PMSM POWERED BY PV PANEL USING PREDICTIVE CONTROLLER OF DTC-SVM

    Get PDF
    The present paper is a part of the study of Direct Torque Control based (DTC) on space vector modulation using predictive controller (Predictive SVM) of a permanent magnet synchronous motor (PMSM) powered by a photovoltaic (PV) source. In the conventional direct torque control (DTC) of a permanent magnet synchronous motor (PMSM), hysteresis controllers are used to choose the proper voltage vector resulting in large torque ripples. The direct torque control can accelerate the torque responses but increases the torque ripple at same time. Nowadays, exist some other alternative approaches to reduce the torque ripples based on (Predictive SVM) technique. This method is based on the replacement of hysteresis comparators (used in conventional DTC) by Proportional Integral (PI) regulators and the selection table by space vector modulation (SVM). The simulation results confirm that this proposed method where the control of the switching frequency is well controlled, allows us to reduce the oscillations of the electromagnetic torque and flux by 20 % and 30%, respectively with a good dynamic response compared with conventional DTC
    corecore