6 research outputs found

    Optical 3D-Nanometry to Study the Function of Biomolecular Motors in Nanotransport

    Get PDF
    A major challenge in nanotechnology is the controlled transport of cargo on the nanometer scale. A promising approach to this problem is the use of molecular motors of the cellular cytoskeleton. The aim of this work was to develop a method to characterize the behavior of filamentous nanoshuttles – specifically of motor protein-driven microtubules – in three dimensions (3-D). The main requirements to meet were low impact on the nanotransport system, high spatial and temporal resolution, and versatility. Furthermore, this method was intended to be used to address open questions in the field of nanotransport. In particular, it was firstly attempted to characterize cargo transport in a system currently favored by most studies in the field, where nanoshuttles are powered by the microtubule motor best understood so far – the plus-end-directed kinesin-1. Secondly, the goal was to further the understanding of potential counter-players of kinesin-1 in nanotransport applications - the much less well understood microtubule minus-end-directed motor proteins 22S dynein and the kinesin-14 non-claret disjunctional (ncd). A novel method to study the linear forward motion as well as the axial motion of filamentous nanoshuttles, which are driven by motors of the cell cytoskeleton, has been introduced. The method uses fluorescence interference-based 3-D nanometer tracking of quantum dots as optical probes that are attached to the nanoshuttles. While other recently reported 3-D tracking techniques based on dual-focus imaging offer similar sensitivity, the method here can be easily performed on any standard epi-fluorescence microscope, even with arc lamp illumination, and additionally holds the potential to retrieve absolute height values. It is strongly suggested that the ease of use might help to spread this valuable and versatile tool for a variety of applications, including studies of interactions between single molecules or even intramolecular changes. Specifically, 3-D tracking has been used to visualize and analyze the rotation of microtubules around their longitudinal axis when they are propelled on a motor protein-coated surface. This geometry called gliding assay is currently favored for most proof-of-principle studies that investigate the use of biomolecular motors for transport of nanoscale cargo with the goal to assemble and manipulate nanostructures. The suitability of the method has been proven for kinesin-1 gliding assays, where knowledge of properties of both, microtubules and kinesin-1, allowed a very precise prediction of microtubule rotation, which was matching the actual measured values very well. The microtubule rotation in kinesin-1 gliding assays has turned out to be robust against the attachment of small cargo in the shape of quantum dots (diameter ∼20 nm), but also against the reduction of electrostatic interactions between microtubules and kinesin-1 by cleavage of the tubulin E-hook. The situation was dramatically different when large cargo (beads with diameter of ∼3 µm) was attached to microtubules. In this case, filament rotation was stopped, but otherwise the impact on motility was surprisingly low. In particular, the velocity of the gliding microtubules only decreased to a negligible degree. This shows that in principle microtubules driven by processive motors like kinesin-1 can make flexible, responsive and effective molecular shuttles for nanotransport applications. In addition, the results might indicate that in vivo kinesin-1 molecules, which transport cargo along microtubules, can likewise flexibly respond to an axial force by deviating from their path parallel to the protofilament axes. Two microtubule minus-end-directed motors that might be employed to counteract kinesin-1 in engineered nanotransport systems are dynein and ncd. Both motors have been found to be capable of generating torque causing short-pitched microtubule rotation in gliding motility assays. The results for 22S dynein helped to resolve controversial findings of earlier reports about the ability of 22S dynein to generate torque. However, it turned out difficult to establish conditions where the movement of the dynein-driven nanoshuttles was homogeneous and reproducible. In contrast, motility in ncd gliding assays looks much more promising. The obtained results supported previous reports of torque generation by ncd. Moreover, a strong dependence of rotational pitches of gliding microtubules on ATP concentration was found. The reason could be that ncd motors in the nucleotide-free microtubule-bound state impede the forward movement of gliding microtubules stronger than the axial motion. To fully understand the nature of this effect, further research is required. Most likely, this will substantially contribute to the understanding of ncd function in vivo. Furthermore, the possibility of tuning the rotation of microtubules acting as nanoshuttles might provide a means to increase control of processes like cargo-loading and unloading.Eine große Herausforderung auf dem Gebiet der Nanotechnologie ist der kontrollierte und präzise Transport von nanoskaligen Objekten. Der Einsatz von molekularen Motoren des zellulären Zytoskeletts hat sich dabei als vielversprechender Ansatz erwiesen. Ziel der hier vorgelegten Arbeit war die Entwicklung einer Methode, um das Verhalten von filamentartigen Nanotransportern - speziell von Mikrotubuli, die durch Motorproteine über Oberflächen bewegt werden - in drei Dimensionen (3-D) zu charakterisieren. Die Hauptkriterien waren dabei eine geringe Störung des zu untersuchenden Systems, hohe räumliche und zeitliche Auflösungen sowie die generelle Anwendbarkeit für Einzelmolekülstudien. Ein weiteres Ziel war es, die entwickelte Methode zur Beantwortung offener Fragen bezüglich des Nanotransports mittels Zytoskelett-basierter Motoren einzusetzen. Insbesondere sollte das System aus Mikrotubuli und dem Motorprotein Kinesin-1, welches für die meisten aktuellen Studien zum Thema Nanotransport herangezogen wird, untersucht werden. Schließlich sollten neue Erkenntnisse über weniger gut erforschte Motorproteine, speziell über 22S Dynein und das Kinesin-14 „Non-claret disjunctional“ (Ncd), gewonnen werden. Beide Motoren könnten in Nanotransportsystemen als Gegenspieler von Kinesin-1 agieren. In der vorliegenden Arbeit wird eine neuartige, auf Fluoreszenz-Interferenz basierende 3-D Nanometertrackingmethode beschrieben. Auf deren Grundlage wird es möglich, die Bewegung von einzelnen fluoreszenten Partikeln nahe einer reflektierenden Oberfläche mit einer Genauigkeit im Nanometerbereich zu verfolgen. Im Vergleich zu anderen kürzlich vorgestellten 3-D Techniken, welche auf bifokaler optischer Mikroskopie basieren und ähnliche Genauigkeiten zulassen, ist die hier vorgestellte Methode mit deutlich geringerem Aufwand auf der Basis eines herkömmlichen Epi-Fluoreszenzmikroskops umsetzbar. Dabei kann die Fluoreszenzanregung wahlweise mit einer Bogenlampe oder einem Laser erfolgen. Weiterhin besteht die Möglichkeit, nicht nur Differenzwerte (wie bei bifokaler Mikroskopie), sondern absolute Werte in der Höhendimension zu messen. Im Ergebnis wurde ein mit geringem Aufwand umsetzbares, gleichwohl hochgradig genaues und vielseitig einsetzbares Werkzeug geschaffen, welches ideal für Studien der Interaktionen von Einzelmolekülen oder auch intramolekularer Dynamik geeignet ist. Mit Hilfe der hier vorgestellten 3-D Trackingmethode wurden die Rotationen von Mikrotubuli um ihre Längsachse während des Gleitens auf mit Motorproteinen besetzten Oberflächen analysiert. Diese Geometrie wird derzeit bevorzugt in Studien eingesetzt, welche den Einsatz von biomolekularen Motoren für den Transport von nanoskaligen Objekten untersuchen und das Ziel verfolgen, Nanostrukturen zu erzeugen und zu manipulieren. Die Ergebnisse zu Rotationen von Mikrotubuli, welche über mit Kinesin-1 besetzte Oberflächen bewegt werden, sind konsistent mit (i) der Eigenschaft von Kinesin-1 sich entlang der Protofilamente von Mikrotubuli zu bewegen und (ii) der Superhelixstruktur von in vitro rekonstituierten Mikrotubuli. Dies belegt die Eignung der Methode für die Charakterisierung von Nanotransportsystemen. Die Rotation von Mikrotubuli, welche durch Kinesin-1 angetrieben werden, hat sich sowohl beim Transport von kleinen Objekten in Form von Quantum Dots (Durchmesser ca. 20 nm) als auch bei der Reduktion elektrostatischer Wechselwirkungen zwischen Kinesin-1 und Mikrotubuli durch Verdau der Tubulin-C-Termini als stabil erwiesen. Ein vollkommen anderes Bild ergab sich für den Transport von großen Objekten (Durchmesser ca. 3 µm). In diesem Fall wurde die Rotation der Filamente angehalten. Unerwarteterweise war jedoch die Vorwärtsbewegung der Mikrotubuli und insbesondere deren Geschwindigkeit kaum betroffen. Dies zeigt, daß Mikrotubuli, welche von prozessiven Motoren wie Kinesin-1 angetrieben werden, das Potential zu responsiven, flexiblen und effektiven molekularen Shuttles besitzen. Außerdem weisen die Ergebnisse darauf hin, daß Kinesin-1-Moleküle, welche in vivo Frachten entlang von Mikrotubuli transportieren, auf seitwärts gerichtete Kräfte reagieren können, indem sie von ihrem intrinsisch vorgegebenen Pfad parallel zur Protofilamentachse des Mikrotubulus abweichen. Zwei Motoren, die sich im Gegensatz zu Kinesin-1 in Richtung des Minus-Endes von Mikrotubuli bewegen, sind 22S Dynein und Ncd. Sie sind somit als Gegenspieler von Kinesin-1 in Nanotransportsystemen prädestiniert. Beide Motoren können, ebenso wie Kinesin-1, die Translokation von Mikrotubuli über Oberflächen sowie damit verbundene Rotationen von Mikrotubuli verursachen. Im Gegensatz zu Kinesin-1 tritt die Rotation unabhängig von einer Superhelixstruktur der Mikrotubuli auf. Die Ergebnisse für 22S Dynein lösen Widersprüche zwischen früheren Studien auf, indem sie belegen, daß dieser Motor Rotationen von Mikrotubuli erzeugen kann. Jedoch scheint es unter Verwendung von 22S Dynein nicht möglich zu sein, Bedingungen zu schaffen, unter welchen sich Mikrotubuli in geeigneter Weise als Nanoshuttles homogen und reproduzierbar bewegen. Der Einsatz von Ncd ist hier deutlich erfolgversprechender. Die in diesem Falle erlangten Erkenntnisse bezüglich der Erzeugung von Rotationen von Mikrotubuli decken sich mit früheren Studien. Ein bislang unbekannter, bemerkenswerter Effekt ist dabei ein Rückgang in der Länge der Rotationsperioden mit sinkender ATP-Konzentration. Die mit dem heutigen Wissensstand über den mechanochemischen Zyklus von Ncd konsistente Erklärung ist, daß Ncd-Motoren im nukleotidfrei an Mikrotubuli gebundenen Zustand die Vorwärtskomponente der Bewegung von gleitenden Mikrotubuli stärker hemmen als die Rotationskomponente. Möglicherweise kann die sich hieraus ergebende Möglichkeit der Regulierung der Rotation von Mikrotubuli dazu eingesetzt werden, das Be- und Entladen von Nanoshuttles zu steuern

    Dynamics of Neural Systems: From Intracellular Transport in Neurons to Network Activity

    Full text link
    Neurodegenerative diseases such as Alzheimer’s disease (AD) are all results of neurons losing their normal functionality. However, the exact mechanics of neurodegeneration remains obscure. Most of the knowledge about this class of diseases is obtained by studying late stage patients. Therefore, the mechanism proceeding the late stages of such diseases are less understood. Better understanding of respective mechanisms can help developing in early diagnostic tools and techniques to enable more effective treatment methods. Analyzing the dynamics of neural systems can be the key to discover the underlying mechanisms, which lead to neurodegenerative diseases. The dynamics of neural systems can be studied in different scales. At subcellular level, dynamics of axonal transport plays an important role in AD. In particular, anterograde axonal transport conducted by kinesin-1, known conventionally as kinesin, is essential for maintaining functional synapses. The stochastic motion of kinesin in the presence of magnetic nanoparticles is studied. A novel reduced-order-model (ROM) is constructed to simulate the collective dynamics of magnetic nanoparticles that are delivered into cells. The ROM coupled with the kinesin model allows the quantification of the decrease in processivity of kinesin and in its average velocity under external loads caused by chains of magnetic nanoparticles. Changes in the properties of transport induced by perturbations have the potential to decipher normal transport from impaired transport in the state of disease. In single-cell level analysis, Ca2+ transients in ASH neuron of C. elegans model organism is studied in the context of biological conditions such as aging and oxidative stress. A novel mathematical model is established that can describe the unique Ca2+ transients of ASH neuron in C. elegans including its “on” and “off” response. The model provides insight into the mechanism that governs the observed Ca2+ dynamics in ASH neuron. Hence, the proposed mathematical model can be utilized as a tool that offers explanation for changes induced by aging or oxidative stress in the neuron based on the observed Ca2+ dynamics. Network level analysis of neurons does not require methods of extremely high spatial and temporal resolution compared to the analysis in subcellular and cellular level. Yet, malfunction in smaller scales can manifest themselves in dynamics of larger scales. In particular, impairment of synaptic connections and their dynamics can jeopardize the normal functionality of the brain in pathological conditions such as AD. The impact of synaptic deficiencies is investigated on robustness of persistence activity (essential for working memory, which is adversely affected by AD) in excitatory networks with different topologies. Networks with rich-clubs are shown to have higher robustness when their synapses are impaired. Hence, monitoring changes in the properties of the neural network can be utilized as a tool to detect defects in synaptic connections. Moreover, such defects are shown to be more devastating if they occur in synapses of highly active neurons. Impairments of synapses in highly active neurons can be directly linked to subcellular processes such as depletion of synaptic resources. Using stochastic firing rate models, the parameters that govern synaptic dynamics are shown to influence the capability of the model to possess memory. The decrease in the release probability of synaptic vesicles, which can be caused by loss of axonal transport, is shown to have a detrimental effect on memory represented by the firing rate of population models.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/145921/1/mirzakh_1.pd

    Patterning planar surfaces with motor proteins: Towards spatial control over motile microtubules: Patterning planar surfaces with motor proteins: Towards spatial control over motile microtubules

    Get PDF
    A major challenge in nanotechnology is the spatially controlled transport of cargo on the nanometer scale. The use of a nanoscale transport system based on molecular motors and filaments of the cytoskeleton proved as a promising approach to this problem. Therefore, the objective of this work was to pattern planar surfaces with motor proteins in a way that allows controlled and guided movement of microtubule-shuttles. The first part of the work was in particular focused on generating nanometer–sized tracks of motor proteins on unstructured surfaces. Specifically, microtubules themselves were used as biological templates for the stamping and alignment of motor proteins. Compared to other soft lithography techniques like microcontact printing this approach circumvented protein denaturation due to drying and conformational changes caused by mechanical stress. Given the large persistence length of microtubules their encounters with the boundaries of the nanotracks are limited to shallow approach angles. This way, the generated structures proved very efficient for the guiding of microtubules without topographical barriers. Topography-free guiding, as demonstrated in this work, is expected to significantly ease the design and fabrication of microtubule-transport systems and opens up the possibility to transport cargo of unlimited size, i.e. without any constraints by the dimensions of topographic guiding channels. Moreover, the biotemplated patterning is a promising tool for in vitro studies on the individual and cooperative action of motor proteins. In particular it might be helpful for the reconstitution of complex subcellular machineries in synthetic environments. As an example, microtubule-microtubule sliding by the biomolecular motor ncd has been shown to induce directional sliding between antiparallel microtubules and static cross-linking between parallel ones. The second part of the work explored an in-situ patterning technique for motor proteins to enable user-defined pattern designs, and investigated the achievable resolution. Photothermal patterning, based on localized light-to-heat conversion combined with a thermoresponsive polymer layer, was presented as a novel method. Specifically, the conformation of poly(N-isopropylacrylamide) (PNIPAM) molecules in aqueous solution was switched between the swollen state at T < 30°C (protein-repelling conformation) to the collapsed state at T > 33°C (protein-binding conformation) by optical signals of visible light to generate heat in a highly-localized manner. Upon heating of a light-absorbing layer on the substrate, the surface-grafted PNIPAM molecules collapsed locally and allowed motor proteins in solution to bind in the illuminated areas. To confirm the successful patterning of kinesin-1 molecules and their functionality microtubule-based gliding motility assays were performed. It was shown that the microtubules bind to the patterned kinesin-1 molecules and are transported exclusively in the patterned areas. While the achieved pattern sizes were currently in the range of ten micrometers, finite element modeling (implemented in COMSOL) showed that increased optical intensities possibly combined with cooling of the sample allow to significantly scale down the pattern dimensions. The produced patterns can be reversibly activated and deactivated at high and low temperature, respectively. Moreover, sequential patterning of multiple kinds of proteins on the same surface will be possible in a similar way without the need for specific linker molecules or elaborate surface preparation. Another advantage of the method is the use of visible light, which is versatile as any wavelength can be applied. In addition visible light is in comparison to other UV-based photopatterning techniques non-damaging to proteins.Der räumlich kontrollierte Transport von nanoskaligen Objekten ist eine große Herausforderung auf dem Gebiet der Nanotechnologie. Ein auf molekularen Motoren und Filamenten des Zellskeletts basierendes Nanotransportsystem hat sich dabei als ein viel versprechender Ansatz erwiesen. Das Ziel der vorgelegten Arbeit war es daher, ebene Oberflächen so mit Motorproteinen zu strukturieren, dass eine kontrollierte und geführte Bewegung von Mikrotubuli-Transportern ermöglicht wird. Der erste Teil der Arbeit war insbesondere darauf fokussiert, Motorprotein-Spuren im Nanometerbereich zu erzeugen. Im zweiten Teil der Arbeit wurde eine Strukturierungsmethode zur Realisierung von benutzerdefinierten Musterdesigns untersucht und die erreichbare Auflösung bestimmt. Für die Nanometerstrukturierung von Oberflächen mit funktionalen Motorproteinen wurde ein neuer Ansatz demonstriert. Mit der Anwendung von Biotemplaten, wie hier der Mikrotubuli, konnte ein hoch-lokalisiertes und orientiertes Anbinden von Proteinen an Oberflächen sowie gleichzeitig geringer Proteindenaturierung erreicht werden. Durch spezifisches Stempeln beziehungsweise Binden von Motoren wurden Muster aus funktionellen Proteinen mit hoher Oberflächendichte hergestellt. Die erzeugten Motor-Spuren haben gezeigt, dass Nanometerstrukturierungen möglich sind und ohne topographische Barrieren zu zuverlässiger Führung von Mikrotubuli führen können. Bisher konnte die nicht-topographische Strukturierung von Oberflächen mit Kinesin-1-Motoren nur im Mikrometerbereich demonstriert werden. Wegen der hohen Steifigkeit der Mikrotubuli war die thermische Energie des Systems in diesen Fällen nicht ausreichend, um die führende Spitze der Mikrotubuli zurück auf das Gebiet mit den strukturierten Motoren zu biegen. Dieses Problem wird durch die kleine Breite der hier demonstrierten Motor-Nanospuren verhindert, da das Auftreffen der Mikrotubuli mit den Grenzlinien auf extrem flache Winkel begrenzt ist. Interessanterweise haben sich Spuren des nicht-prozessiven Motors Kinesin-14 für das Führen und den Transport im Nanometerbereich als noch zuverlässiger herausgestellt als Kinesin-1-Spuren. Es ist zu erwarten, dass nicht-topographisches Führen, wie es in dieser Arbeit gezeigt wurde, das Design und die Herstellung von Mikrotubuli-Transportsystemen deutlich vereinfacht und die Möglichkeit eröffnet, Cargo mit unlimitierter Größe, d.h. ohne Einschränkungen durch die Abmessungen der topographischen Führungskanäle, zu transportieren. Zusätzlich ist die biotemplierte Strukturierung ein viel versprechendes Werkzeug um das individuelle und das kooperative Arbeiten von Motorproteinen in vitro untersuchen und komplexe subzelluläre Maschinerien in synthetischer Umgebung rekonstituieren zu können. Dies wurde am Beispiel des gerichteten Gleitens des biomolekularen Motors Kinesin-14 gezeigt, der ein gerichtetes Gleiten zwischen antiparallelen Mikrotubuli und statisches Vernetzen zwischen parallelen Mikrotubuli hervorruft. Mit dem Ansatz des biotemplierten Strukturierens ist es jedoch nicht einfach möglich, benutzerdefinierte Spuren zu erzeugen. Daher wurde die photothermische Proteinstrukturierung als eine neue Methode für die frei programmierbare, hochauflösende und schnelle Herstellung von strukturierten Proteinoberflächen eingeführt. Auf diese Weise wurden Kinesin-1-Muster durch licht-induziertes Heizen einer licht-absorbierenden Substratschicht erzeugt. Die thermisch schaltbaren poly(N-isopropylacrylamid) (PNIPAM) Moleküle auf der Oberfläche kollabierten lokal und erlaubten es den Motorproteinen, in den beleuchteten Gebieten aus der Lösung an die Oberfläche zu binden. Die Bewegung gleitender Mikrotubuli bestätigte anschließend die erfolgreiche Strukturierung der Kinesin-1-Motoren und deren Funktionalität, da die Mikrotubuli an die strukturierten Motoren banden und ausschließlich in den strukturierten Gebieten transportiert wurden. Neben der Proteinstrukturierung wurde die lokalisierte Licht-zu-Wärme-Umwandlung kombiniert mit einer thermisch schaltbaren Polymerschicht auch für die lokale Aktivierung von Kinesin-1-Motoren auf der Oberfläche genutzt. Ein Vorteil der photothermischen Proteinstrukturierung ist die Möglichkeit, sichtbares Licht zu verwenden, da jede beliebige Wellenlänge angewendet werden kann und sichtbares Licht, im Vergleich zu anderen UV-basierten Photostrukturierungsmethoden, Proteine nicht schädigt. Modellierungen mit Hilfe der Finite-Elemente-Methode (implementiert in der Software COMSOL) haben gezeigt, dass die Lichtintensität und die Oberflächentemperatur speziell eingestellt werden müssen, um definierte Strukturgrößen zu erzielen. Während die derzeitig erzeugten Muster Größen im Bereich von zehn Mikrometern hatten, könnten durch höhere optische Intensitäten kombiniert mit Kühlung der Probe die Größenordnungen signifikant reduziert werden. Die reale experimentelle Auflösung wird jedoch auch von der Schaltcharakteristik des Polymers und der Proteinbindungsdynamik abhängen. Die hergestellten Muster können reversibel bei hohen beziehungsweise niedrigen Temperaturen aktiviert und deaktiviert werden. Zusätzlich können auf die gleiche Weise verschiedene Proteinsorten sequentiell auf einer Oberfläche strukturiert werden, ohne dass spezifische Bindungsmoleküle oder aufwändige Oberflächenpräparationen notwendig wären. Die Möglichkeit, Proteine reversibel an die Oberfläche zu binden, um geschriebene Muster wieder löschen zu können, wäre eine Weiterentwicklung und würde die Anwendungsmöglichkeiten der photothermischen Strukturierungsmethode erweitern. Außerdem würden optisch schaltbare Polymere das direkte Strukturieren von Motoren mit Licht ermöglichen und daher die Methode vereinfachen

    Active Stimuli-Responsive Polymer Surfaces and Thin Films: Design, Properties and Applications: Active Stimuli-Responsive Polymer Surfaces and Thin Films: Design, Properties and Applications

    Get PDF
    Design of 2D and 3D micropatterned materials is highly important for printing technology, microfluidics, microanalytics, information storage, microelectronics and biotechnology. Biotechnology deserves particular interest among the diversity of possible applications because its opens perspectives for regeneration of tissues and organs that can considerably improve our life. In fact, biotechnology is in constant need for development of microstructured materials with controlled architecture. Such materials can serve either as scaffolds or as microanalytical platforms, where cells are able to self-organize in a programmed manner. Microstructured materials, for example, allow in vitro investigation of complex cell-cell interactions, interactions between cells and engineered materials. With the help of patterned surfaces it was demonstrated that cell adhesion and viability as well as differentiation of stem cells1 depend of on the character of nano- and micro- structures 2 as well as their size. There are number of methods based on optical lithography, atomic force microscopy, printing techniques, chemical vapor deposition, which have been developed and successfully applied for 2D patterning. While each of these methods provides particular advantages, a general trade-off between spatial resolution, throughput, “biocompatibility of method” and usability of fabricated patterned surfaces exists. For example, AFM-based techniques allow very high nanometer resolution and can be used to place small numbers of functional proteins with nanometer lateral resolution, but are limited to low writing speeds and small pattern sizes. Albeit, the resolution of photolithography is lower, while it is much faster and cheaper. Therefore, it is highly desirable to develop methods for high-resolution patterning at reasonably low cost and high throughput. Although many approaches to fabricate sophisticated surface patterns exist, they are almost entirely limited to producing fixed patterns that cannot be intentionally modified or switched on the fly in physiologic environment. This limits the usability of a patterned surface to a single specific application and new microstructures have to be fabricated for new applications. Therefore, it is desirable to develop methods for design of switchable and rewritable patterns. Next, the high-energy of the ultraviolet radiation, which is typically used for photolithography, can be harmful for biological species. It is also highly important to develop an approach for photopatterning where visible light is used instead of UV light. Therefore, it is very important for biotechnological applications to achieve good resolution at low costs, create surface with switchable and reconfigurable patterns, perform patterning in mild physiologic conditions and avoid use of harmful UV light. 3D patterning is experimentally more complicated than 2D one and the applicability of available techniques is substantially limited. For example, interference photolithography allows fabrication of 3D structures with limited thickness. Two-photon photolithography, which allows nanoscale resolution, is very slow and highly expensive. Assembling of 3D structures by stacking of 2D ones is time consuming and does not allow fabrication of fine hollow structures. At the same time, nature offers an enormous arsenal of ideas for the design of novel materials with superior properties. In particular, self-assembly and self-organization being the driving principles of structure formation in nature attract significant interest as promising concepts for the design of intelligent materials 3. Self-folding films are the examples of biomimetic materials4. Such films mimic movement mechanisms of plants 5-7 and are able to self-organize and form complex 3D structures. The self-folding films consist of two materials with different properties. At least one of these materials, active one, can change its volume. Because of non-equal expansion of the materials, the self-folding films are able to form a tubes, capsules or more complex structure. Similar to origami, the self-folding films provide unique possibilities for the straightforward fabrication of highly complex 3D micro-structures with patterned inner and outer walls that cannot be achieved using other currently available technologies. The self-folded micro-objects can be assembled into sophisticated, hierarchically-organized 3D super-constructs with structural anisotropy and highly complex surface patterns. Till now most of the research in the field of self-folding films was focused on inorganic materials. Due to their rigidity, limited biocompatibility and non-biodegradability, application of inorganic self-folding materials for biomedical purposes is limited. Polymers are more suitable for these purposes. There are many factors, which make polymer-based self-folding films particularly attractive. There is a variety of polymers sensitive to different stimuli that allows design of self-folding films, which are able to fold in response to various external signals. There are many polymers changing their properties in physiological ranges of pH and temperature as well as polymers sensitive to biochemical processes. There is a variety of biocompatible and biodegradable polymers. These properties make self-folding polymer highly attractive for biological applications. Polymers undergo considerable and reversible changes of volume that allows design of systems with reversible folding. Fabrication of 3D structures with the size ranging from hundreds of nanometers to centimeters is possible. In spite of their attractive properties, the polymer-based systems remained almost out of focus – ca 15 papers including own ones were published on this topic (see own review 8, state October 2011). Thereby the development of biomimetic materials based on self-folding polymer films is highly desired and can open new horizons for the design of unique 3D materials with advanced properties for lab-on-chip applications, smart materials for everyday life and regenerative medicine
    corecore