47,834 research outputs found

    Tackling 3D ToF Artifacts Through Learning and the FLAT Dataset

    Full text link
    Scene motion, multiple reflections, and sensor noise introduce artifacts in the depth reconstruction performed by time-of-flight cameras. We propose a two-stage, deep-learning approach to address all of these sources of artifacts simultaneously. We also introduce FLAT, a synthetic dataset of 2000 ToF measurements that capture all of these nonidealities, and allows to simulate different camera hardware. Using the Kinect 2 camera as a baseline, we show improved reconstruction errors over state-of-the-art methods, on both simulated and real data.Comment: ECCV 201

    CED: Color Event Camera Dataset

    Full text link
    Event cameras are novel, bio-inspired visual sensors, whose pixels output asynchronous and independent timestamped spikes at local intensity changes, called 'events'. Event cameras offer advantages over conventional frame-based cameras in terms of latency, high dynamic range (HDR) and temporal resolution. Until recently, event cameras have been limited to outputting events in the intensity channel, however, recent advances have resulted in the development of color event cameras, such as the Color-DAVIS346. In this work, we present and release the first Color Event Camera Dataset (CED), containing 50 minutes of footage with both color frames and events. CED features a wide variety of indoor and outdoor scenes, which we hope will help drive forward event-based vision research. We also present an extension of the event camera simulator ESIM that enables simulation of color events. Finally, we present an evaluation of three state-of-the-art image reconstruction methods that can be used to convert the Color-DAVIS346 into a continuous-time, HDR, color video camera to visualise the event stream, and for use in downstream vision applications.Comment: Conference on Computer Vision and Pattern Recognition Workshop

    Micro Fourier Transform Profilometry (μ\muFTP): 3D shape measurement at 10,000 frames per second

    Full text link
    Recent advances in imaging sensors and digital light projection technology have facilitated a rapid progress in 3D optical sensing, enabling 3D surfaces of complex-shaped objects to be captured with improved resolution and accuracy. However, due to the large number of projection patterns required for phase recovery and disambiguation, the maximum fame rates of current 3D shape measurement techniques are still limited to the range of hundreds of frames per second (fps). Here, we demonstrate a new 3D dynamic imaging technique, Micro Fourier Transform Profilometry (μ\muFTP), which can capture 3D surfaces of transient events at up to 10,000 fps based on our newly developed high-speed fringe projection system. Compared with existing techniques, μ\muFTP has the prominent advantage of recovering an accurate, unambiguous, and dense 3D point cloud with only two projected patterns. Furthermore, the phase information is encoded within a single high-frequency fringe image, thereby allowing motion-artifact-free reconstruction of transient events with temporal resolution of 50 microseconds. To show μ\muFTP's broad utility, we use it to reconstruct 3D videos of 4 transient scenes: vibrating cantilevers, rotating fan blades, bullet fired from a toy gun, and balloon's explosion triggered by a flying dart, which were previously difficult or even unable to be captured with conventional approaches.Comment: This manuscript was originally submitted on 30th January 1
    • …
    corecore