13,845 research outputs found

    Semantic modelling of user interests based on cross-folksonomy analysis

    Get PDF
    The continued increase in Web usage, in particular participation in folksonomies, reveals a trend towards a more dynamic and interactive Web where individuals can organise and share resources. Tagging has emerged as the de-facto standard for the organisation of such resources, providing a versatile and reactive knowledge management mechanism that users find easy to use and understand. It is common nowadays for users to have multiple profiles in various folksonomies, thus distributing their tagging activities. In this paper, we present a method for the automatic consolidation of user profiles across two popular social networking sites, and subsequent semantic modelling of their interests utilising Wikipedia as a multi-domain model. We evaluate how much can be learned from such sites, and in which domains the knowledge acquired is focussed. Results show that far richer interest profiles can be generated for users when multiple tag-clouds are combine

    Machine Learning of User Profiles: Representational Issues

    Full text link
    As more information becomes available electronically, tools for finding information of interest to users becomes increasingly important. The goal of the research described here is to build a system for generating comprehensible user profiles that accurately capture user interest with minimum user interaction. The research described here focuses on the importance of a suitable generalization hierarchy and representation for learning profiles which are predictively accurate and comprehensible. In our experiments we evaluated both traditional features based on weighted term vectors as well as subject features corresponding to categories which could be drawn from a thesaurus. Our experiments, conducted in the context of a content-based profiling system for on-line newspapers on the World Wide Web (the IDD News Browser), demonstrate the importance of a generalization hierarchy and the promise of combining natural language processing techniques with machine learning (ML) to address an information retrieval (IR) problem.Comment: 6 page

    On content-based recommendation and user privacy in social-tagging systems

    Get PDF
    Recommendation systems and content filtering approaches based on annotations and ratings, essentially rely on users expressing their preferences and interests through their actions, in order to provide personalised content. This activity, in which users engage collectively has been named social tagging, and it is one of the most popular in which users engage online, and although it has opened new possibilities for application interoperability on the semantic web, it is also posing new privacy threats. It, in fact, consists of describing online or offline resources by using free-text labels (i.e. tags), therefore exposing the user profile and activity to privacy attacks. Users, as a result, may wish to adopt a privacy-enhancing strategy in order not to reveal their interests completely. Tag forgery is a privacy enhancing technology consisting of generating tags for categories or resources that do not reflect the user's actual preferences. By modifying their profile, tag forgery may have a negative impact on the quality of the recommendation system, thus protecting user privacy to a certain extent but at the expenses of utility loss. The impact of tag forgery on content-based recommendation is, therefore, investigated in a real-world application scenario where different forgery strategies are evaluated, and the consequent loss in utility is measured and compared.Peer ReviewedPostprint (author’s final draft

    Interactive Search and Exploration in Online Discussion Forums Using Multimodal Embeddings

    Get PDF
    In this paper we present a novel interactive multimodal learning system, which facilitates search and exploration in large networks of social multimedia users. It allows the analyst to identify and select users of interest, and to find similar users in an interactive learning setting. Our approach is based on novel multimodal representations of users, words and concepts, which we simultaneously learn by deploying a general-purpose neural embedding model. We show these representations to be useful not only for categorizing users, but also for automatically generating user and community profiles. Inspired by traditional summarization approaches, we create the profiles by selecting diverse and representative content from all available modalities, i.e. the text, image and user modality. The usefulness of the approach is evaluated using artificial actors, which simulate user behavior in a relevance feedback scenario. Multiple experiments were conducted in order to evaluate the quality of our multimodal representations, to compare different embedding strategies, and to determine the importance of different modalities. We demonstrate the capabilities of the proposed approach on two different multimedia collections originating from the violent online extremism forum Stormfront and the microblogging platform Twitter, which are particularly interesting due to the high semantic level of the discussions they feature

    Multi-dimensional clustering in user profiling

    Get PDF
    User profiling has attracted an enormous number of technological methods and applications. With the increasing amount of products and services, user profiling has created opportunities to catch the attention of the user as well as achieving high user satisfaction. To provide the user what she/he wants, when and how, depends largely on understanding them. The user profile is the representation of the user and holds the information about the user. These profiles are the outcome of the user profiling. Personalization is the adaptation of the services to meet the user’s needs and expectations. Therefore, the knowledge about the user leads to a personalized user experience. In user profiling applications the major challenge is to build and handle user profiles. In the literature there are two main user profiling methods, collaborative and the content-based. Apart from these traditional profiling methods, a number of classification and clustering algorithms have been used to classify user related information to create user profiles. However, the profiling, achieved through these works, is lacking in terms of accuracy. This is because, all information within the profile has the same influence during the profiling even though some are irrelevant user information. In this thesis, a primary aim is to provide an insight into the concept of user profiling. For this purpose a comprehensive background study of the literature was conducted and summarized in this thesis. Furthermore, existing user profiling methods as well as the classification and clustering algorithms were investigated. Being one of the objectives of this study, the use of these algorithms for user profiling was examined. A number of classification and clustering algorithms, such as Bayesian Networks (BN) and Decision Trees (DTs) have been simulated using user profiles and their classification accuracy performances were evaluated. Additionally, a novel clustering algorithm for the user profiling, namely Multi-Dimensional Clustering (MDC), has been proposed. The MDC is a modified version of the Instance Based Learner (IBL) algorithm. In IBL every feature has an equal effect on the classification regardless of their relevance. MDC differs from the IBL by assigning weights to feature values to distinguish the effect of the features on clustering. Existing feature weighing methods, for instance Cross Category Feature (CCF), has also been investigated. In this thesis, three feature value weighting methods have been proposed for the MDC. These methods are; MDC weight method by Cross Clustering (MDC-CC), MDC weight method by Balanced Clustering (MDC-BC) and MDC weight method by changing the Lower-limit to Zero (MDC-LZ). All of these weighted MDC algorithms have been tested and evaluated. Additional simulations were carried out with existing weighted and non-weighted IBL algorithms (i.e. K-Star and Locally Weighted Learning (LWL)) in order to demonstrate the performance of the proposed methods. Furthermore, a real life scenario is implemented to show how the MDC can be used for the user profiling to improve personalized service provisioning in mobile environments. The experiments presented in this thesis were conducted by using user profile datasets that reflect the user’s personal information, preferences and interests. The simulations with existing classification and clustering algorithms (e.g. Bayesian Networks (BN), Naïve Bayesian (NB), Lazy learning of Bayesian Rules (LBR), Iterative Dichotomister 3 (Id3)) were performed on the WEKA (version 3.5.7) machine learning platform. WEKA serves as a workbench to work with a collection of popular learning schemes implemented in JAVA. In addition, the MDC-CC, MDC-BC and MDC-LZ have been implemented on NetBeans IDE 6.1 Beta as a JAVA application and MATLAB. Finally, the real life scenario is implemented as a Java Mobile Application (Java ME) on NetBeans IDE 7.1. All simulation results were evaluated based on the error rate and accuracy
    corecore