704 research outputs found

    Spatiotemporal dynamics in a spatial plankton system

    Full text link
    In this paper, we investigate the complex dynamics of a spatial plankton-fish system with Holling type III functional responses. We have carried out the analytical study for both one and two dimensional system in details and found out a condition for diffusive instability of a locally stable equilibrium. Furthermore, we present a theoretical analysis of processes of pattern formation that involves organism distribution and their interaction of spatially distributed population with local diffusion. The results of numerical simulations reveal that, on increasing the value of the fish predation rates, the sequences spots →\rightarrow spot-stripe mixtures→\rightarrow stripes→\rightarrow hole-stripe mixtures holes→\rightarrow wave pattern is observed. Our study shows that the spatially extended model system has not only more complex dynamic patterns in the space, but also has spiral waves.Comment: Published Pape

    On some Free Boundary Problems of the Prey-predator Model

    Full text link
    In this paper we investigate some free boundary problems for the Lotka-Volterra type prey-predator model in one space dimension. The main objective is to understand the asymptotic behavior of the two species (prey and predator) spreading via a free boundary. We prove a spreading-vanishing dichotomy, namely the two species either successfully spread to the entire space as time tt goes to infinity and survive in the new environment, or they fail to establish and die out in the long run. The long time behavior of solution and criteria for spreading and vanishing are also obtained. Finally, when spreading successfully, we provide an estimate to show that the spreading speed (if exists) cannot be faster than the minimal speed of traveling wavefront solutions for the prey-predator model on the whole real line without a free boundary.Comment: 28 page

    Modelling chemotaxis of microswimmers: from individual to collective behavior

    Full text link
    We discuss recent progress in the theoretical description of chemotaxis by coupling the diffusion equation of a chemical species to equations describing the motion of sensing microorganisms. In particular, we discuss models for autochemotaxis of a single microorganism which senses its own secretion leading to phenomena such as self-localization and self-avoidance. For two heterogeneous particles, chemotactic coupling can lead to predator-prey behavior including chase and escape phenomena, and to the formation of active molecules, where motility spontaneously emerges when the particles approach each other. We close this review with some remarks on the collective behavior of many particles where chemotactic coupling induces patterns involving clusters, spirals or traveling waves.Comment: to appear as a contribution to the book "Chemical kinetics beyond the textbook

    Dynamics of a diffusive predator-prey system with fear effect in advective environments

    Full text link
    We explore a diffusive predator-prey system that incorporates the fear effect in advective environments. Firstly, we analyze the eigenvalue problem and the adjoint operator, considering Constant-Flux and Dirichlet (CF/D) boundary conditions, as well as Free-Flow (FF) boundary conditions. Our investigation focuses on determining the direction and stability of spatial Hopf bifurcation, with the generation delay Ï„\tau serving as the bifurcation parameter. Additionally, we examine the influence of both linear and Holling-II functional responses on the dynamics of the model. Through these analyses, we aim to gain a better understanding of the intricate relationship between advection, predation, and prey response in this system

    Partial Differential Equations in Ecology

    Get PDF
    Partial differential equations (PDEs) have been used in theoretical ecology research for more than eighty years. Nowadays, along with a variety of different mathematical techniques, they remain as an efficient, widely used modelling framework; as a matter of fact, the range of PDE applications has even become broader. This volume presents a collection of case studies where applications range from bacterial systems to population dynamics of human riots

    Multiple wave solutions in a diffusive predator-prey model with strong Allee effect on prey and ratio-dependent functional response

    Full text link
    A thorough analysis is performed in a predator-prey reaction-diffusion model which includes three relevant complex dynamical ingredients: (a) a strong Allee effect; (b) ratio-dependent functional responses; and (c) transport attributes given by a diffusion process. As is well-known in the specialized literature, these aspects capture adverse survival conditions for the prey, predation search features and non-homogeneous spatial dynamical distribution of both populations. We look for traveling-wave solutions and provide rigorous results coming from a standard local analysis, numerical bifurcation analysis, and relevant computations of invariant manifolds to exhibit homoclinic and heteroclinic connections and periodic orbits in the associated dynamical system in R4R^4. In so doing, we present and describe a diverse zoo of traveling wave solutions; and we relate their occurrence to the Allee effect, the spreading rates and propagation speed. In addition, homoclinic chaos is manifested via both saddle-focus and focus-focus bifurcations as well as a Belyakov point. An actual computation of global invariant manifolds near a focus-focus homoclinic bifurcation is also presented to enravel a multiplicity of wave solutions in the model. A deep understanding of such ecological dynamics is therefore highlighted.Comment: 35 pages, 22 figure
    • …
    corecore