61 research outputs found

    Latent Class Model with Application to Speaker Diarization

    Get PDF
    In this paper, we apply a latent class model (LCM) to the task of speaker diarization. LCM is similar to Patrick Kenny's variational Bayes (VB) method in that it uses soft information and avoids premature hard decisions in its iterations. In contrast to the VB method, which is based on a generative model, LCM provides a framework allowing both generative and discriminative models. The discriminative property is realized through the use of i-vector (Ivec), probabilistic linear discriminative analysis (PLDA), and a support vector machine (SVM) in this work. Systems denoted as LCM-Ivec-PLDA, LCM-Ivec-SVM, and LCM-Ivec-Hybrid are introduced. In addition, three further improvements are applied to enhance its performance. 1) Adding neighbor windows to extract more speaker information for each short segment. 2) Using a hidden Markov model to avoid frequent speaker change points. 3) Using an agglomerative hierarchical cluster to do initialization and present hard and soft priors, in order to overcome the problem of initial sensitivity. Experiments on the National Institute of Standards and Technology Rich Transcription 2009 speaker diarization database, under the condition of a single distant microphone, show that the diarization error rate (DER) of the proposed methods has substantial relative improvements compared with mainstream systems. Compared to the VB method, the relative improvements of LCM-Ivec-PLDA, LCM-Ivec-SVM, and LCM-Ivec-Hybrid systems are 23.5%, 27.1%, and 43.0%, respectively. Experiments on our collected database, CALLHOME97, CALLHOME00 and SRE08 short2-summed trial conditions also show that the proposed LCM-Ivec-Hybrid system has the best overall performance

    Deep learning for i-vector speaker and language recognition

    Get PDF
    Over the last few years, i-vectors have been the state-of-the-art technique in speaker and language recognition. Recent advances in Deep Learning (DL) technology have improved the quality of i-vectors but the DL techniques in use are computationally expensive and need speaker or/and phonetic labels for the background data, which are not easily accessible in practice. On the other hand, the lack of speaker-labeled background data makes a big performance gap, in speaker recognition, between two well-known cosine and Probabilistic Linear Discriminant Analysis (PLDA) i-vector scoring techniques. It has recently been a challenge how to fill this gap without speaker labels, which are expensive in practice. Although some unsupervised clustering techniques are proposed to estimate the speaker labels, they cannot accurately estimate the labels. This thesis tries to solve the problems above by using the DL technology in different ways, without any need of speaker or phonetic labels. In order to fill the performance gap between cosine and PLDA scoring given unlabeled background data, we have proposed an impostor selection algorithm and a universal model adaptation process in a hybrid system based on Deep Belief Networks (DBNs) and Deep Neural Networks (DNNs) to discriminatively model each target speaker. In order to have more insight into the behavior of DL techniques in both single and multi-session speaker enrollment tasks, some experiments have been carried out in both scenarios. Experiments on the National Institute of Standard and Technology (NIST) 2014 i-vector challenge show that 46% of this performance gap, in terms of minDCF, is filled by the proposed DL-based system. Furthermore, the score combination of the proposed DL-based system and PLDA with estimated labels covers 79% of this gap. In the second line of the research, we have developed an efficient alternative vector representation of speech by keeping the computational cost as low as possible and avoiding phonetic labels, which are not always accessible. The proposed vectors will be based on both Gaussian Mixture Models (GMMs) and Restricted Boltzmann Machines (RBMs) and will be referred to as GMM-RBM vectors. The role of RBM is to learn the total speaker and session variability among background GMM supervectors. This RBM, which will be referred to as Universal RBM (URBM), will then be used to transform unseen supervectors to the proposed low dimensional vectors. The use of different activation functions for training the URBM and different transformation functions for extracting the proposed vectors are investigated. At the end, a variant of Rectified Linear Unit (ReLU) which is referred to as Variable ReLU (VReLU) is proposed. Experiments on the core test condition 5 of the NIST Speaker Recognition Evaluation (SRE) 2010 show that comparable results with conventional i-vectors are achieved with a clearly lower computational load in the vector extraction process. Finally, for the Language Identification (LID) application, we have proposed a DNN architecture to model effectively the i-vector space of four languages, English, Spanish, German, and Finnish, in the car environment. Both raw i-vectors and session variability compensated i-vectors are evaluated as input vectors to DNN. The performance of the proposed DNN architecture is compared with both conventional GMM-UBM and i-vector/Linear Discriminant Analysis (LDA) systems considering the effect of duration of signals. It is shown that the signals with duration between 2 and 3 sec meet the accuracy and speed requirements of this application, in which the proposed DNN architecture outperforms GMM-UBM and i-vector/LDA systems by 37% and 28%, respectively.En los últimos años, los i-vectores han sido la técnica de referencia en el reconocimiento de hablantes y de idioma. Los últimos avances en la tecnología de Aprendizaje Profundo (Deep Learning. DL) han mejorado la calidad de los i-vectores, pero las técnicas DL en uso son computacionalmente costosas y necesitan datos etiquetados para cada hablante y/o unidad fon ética, los cuales no son fácilmente accesibles en la práctica. La falta de datos etiquetados provoca una gran diferencia de los resultados en el reconocimiento de hablante con i-vectors entre las dos técnicas de evaluación más utilizados: distancia coseno y Análisis Lineal Discriminante Probabilístico (PLDA). Por el momento, sigue siendo un reto cómo reducir esta brecha sin disponer de las etiquetas de los hablantes, que son costosas de obtener. Aunque se han propuesto algunas técnicas de agrupamiento sin supervisión para estimar las etiquetas de los hablantes, no pueden estimar las etiquetas con precisión. Esta tesis trata de resolver los problemas mencionados usando la tecnología DL de diferentes maneras, sin necesidad de etiquetas de hablante o fon éticas. Con el fin de reducir la diferencia de resultados entre distancia coseno y PLDA a partir de datos no etiquetados, hemos propuesto un algoritmo selección de impostores y la adaptación a un modelo universal en un sistema hibrido basado en Deep Belief Networks (DBN) y Deep Neural Networks (DNN) para modelar a cada hablante objetivo de forma discriminativa. Con el fin de tener más información sobre el comportamiento de las técnicas DL en las tareas de identificación de hablante en una única sesión y en varias sesiones, se han llevado a cabo algunos experimentos en ambos escenarios. Los experimentos utilizando los datos del National Institute of Standard and Technology (NIST) 2014 i-vector Challenge muestran que el 46% de esta diferencia de resultados, en términos de minDCF, se reduce con el sistema propuesto basado en DL. Además, la combinación de evaluaciones del sistema propuesto basado en DL y PLDA con etiquetas estimadas reduce el 79% de esta diferencia. En la segunda línea de la investigación, hemos desarrollado una representación vectorial alternativa eficiente de la voz manteniendo el coste computacional lo más bajo posible y evitando las etiquetas fon éticas, Los vectores propuestos se basan tanto en el Modelo de Mezcla de Gaussianas (GMM) y en las Maquinas Boltzmann Restringidas (RBM), a los que se hacer referencia como vectores GMM-RBM. El papel de la RBM es aprender la variabilidad total del hablante y de la sesión entre los supervectores del GMM gen érico. Este RBM, al que se hará referencia como RBM Universal (URBM), se utilizará para transformar supervectores ocultos en los vectores propuestos, de menor dimensión. Además, se estudia el uso de diferentes funciones de activación para el entrenamiento de la URBM y diferentes funciones de transformación para extraer los vectores propuestos. Finalmente, se propone una variante de la Unidad Lineal Rectificada (ReLU) a la que se hace referencia como Variable ReLU (VReLU). Los experimentos sobre los datos de la condición 5 del test de la NIST Speaker Recognition Evaluation (SRE) 2010 muestran que se han conseguidos resultados comparables con los i-vectores convencionales, con una carga computacional claramente inferior en el proceso de extracción de vectores. Por último, para la aplicación de Identificación de Idioma (LID), hemos propuesto una arquitectura DNN para modelar eficazmente en el entorno del coche el espacio i-vector de cuatro idiomas: inglés, español, alemán y finlandés. Tanto los i-vectores originales como los i-vectores propuestos son evaluados como vectores de entrada a DNN. El rendimiento de la arquitectura DNN propuesta se compara con los sistemas convencionales GMM-UBM y i-vector/Análisis Discriminante Lineal (LDA) considerando el efecto de la duración de las señales. Se muestra que en caso de señales con una duración entre 2 y 3 se obtienen resultados satisfactorios en cuanto a precisión y resultados, superando a los sistemas GMM-UBM y i-vector/LDA en un 37% y 28%, respectivament

    Restricted Boltzmann machines for vector representation of speech in speaker recognition

    Get PDF
    Over the last few years, i-vectors have been the state-of-the-art technique in speaker recognition. Recent advances in Deep Learning (DL) technology have improved the quality of i-vectors but the DL techniques in use are computationally expensive and need phonetically labeled background data. The aim of this work is to develop an efficient alternative vector representation of speech by keeping the computational cost as low as possible and avoiding phonetic labels, which are not always accessible. The proposed vectors will be based on both Gaussian Mixture Models (GMM) and Restricted Boltzmann Machines (RBM) and will be referred to as GMM–RBM vectors. The role of RBM is to learn the total speaker and session variability among background GMM supervectors. This RBM, which will be referred to as Universal RBM (URBM), will then be used to transform unseen supervectors to the proposed low dimensional vectors. The use of different activation functions for training the URBM and different transformation functions for extracting the proposed vectors are investigated. At the end, a variant of Rectified Linear Units (ReLU) which is referred to as variable ReLU (VReLU) is proposed. Experiments on the core test condition 5 of NIST SRE 2010 show that comparable results with conventional i-vectors are achieved with a clearly lower computational load in the vector extraction process.Peer ReviewedPostprint (published version

    비화자 요소에 강인한 화자 인식을 위한 딥러닝 기반 성문 추출

    Get PDF
    학위논문 (박사) -- 서울대학교 대학원 : 공과대학 전기·정보공학부, 2021. 2. 김남수.Over the recent years, various deep learning-based embedding methods have been proposed and have shown impressive performance in speaker verification. However, as in most of the classical embedding techniques, the deep learning-based methods are known to suffer from severe performance degradation when dealing with speech samples with different conditions (e.g., recording devices, emotional states). Also, unlike the classical Gaussian mixture model (GMM)-based techniques (e.g., GMM supervector or i-vector), since the deep learning-based embedding systems are trained in a fully supervised manner, it is impossible for them to utilize unlabeled dataset when training. In this thesis, we propose a variational autoencoder (VAE)-based embedding framework, which extracts the total variability embedding and a representation for the uncertainty within the input speech distribution. Unlike the conventional deep learning-based embedding techniques (e.g., d-vector or x-vector), the proposed VAE-based embedding system is trained in an unsupervised manner, which enables the utilization of unlabeled datasets. Furthermore, in order to prevent the potential loss of information caused by the Kullback-Leibler divergence regularization term in the VAE-based embedding framework, we propose an adversarially learned inference (ALI)-based embedding technique. Both VAE- and ALI-based embedding techniques have shown great performance in terms of short duration speaker verification, outperforming the conventional i-vector framework. Additionally, we present a fully supervised training method for disentangling the non-speaker nuisance information from the speaker embedding. The proposed training scheme jointly extracts the speaker and nuisance attribute (e.g., recording channel, emotion) embeddings, and train them to have maximum information on their main-task while ensuring maximum uncertainty on their sub-task. Since the proposed method does not require any heuristic training strategy as in the conventional disentanglement techniques (e.g., adversarial learning, gradient reversal), optimizing the embedding network is relatively more stable. The proposed scheme have shown state-of-the-art performance in RSR2015 Part 3 dataset, and demonstrated its capability in efficiently disentangling the recording device and emotional information from the speaker embedding.최근 몇년간 다양한 딥러닝 기반 성문 추출 기법들이 제안되어 왔으며, 화자 인식에서 높은 성능을 보였다. 하지만 고전적인 성문 추출 기법에서와 마찬가지로, 딥러닝 기반 성문 추출 기법들은 서로 다른 환경 (e.g., 녹음 기기, 감정)에서 녹음된 음성들을 분석하는 과정에서 성능 저하를 겪는다. 또한 기존의 가우시안 혼합 모델 (Gaussian mixture model, GMM) 기반의 기법들 (e.g., GMM 슈퍼벡터, i-벡터)와 달리 딥러닝 기반 성문 추출 기법들은 교사 학습을 통하여 최적화되기에 라벨이 없는 데이터를 활용할 수 없다는 한계가 있다. 본 논문에서는 variational autoencoder (VAE) 기반의 성문 추출 기법을 제안하며, 해당 기법에서는 음성 분포 패턴을 요약하는 벡터와 음성 내의 불확실성을 표현하는 벡터를 추출한다. 기존의 딥러닝 기반 성문 추출 기법 (e.g., d-벡터, x-벡터)와는 달리, 제안하는 기법은 비교사 학습을 통하여 최적화 되기에 라벨이 없는 데이터를 활용할 수 있다. 더 나아가 VAE의 KL-divergence 제약 함수로 인한 정보 손실을 방지하기 위하여 adversarially learned inference (ALI) 기반의 성문 추출 기법을 추가적으로 제안한다. 제안한 VAE 및 ALI 기반의 성문 추출 기법은 짧은 음성에서의 화자 인증 실험에서 높은 성능을 보였으며, 기존의 i-벡터 기반의 기법보다 좋은 결과를 보였다. 또한 본 논문에서는 성문 벡터로부터 비 화자 요소 (e.g., 녹음 기기, 감정)에 대한 정보를 제거하는 학습법을 제안한다. 제안하는 기법은 화자 벡터와 비화자 벡터를 동시에 추출하며, 각 벡터는 자신의 주 목적에 대한 정보를 최대한 많이 유지하되, 부 목적에 대한 정보를 최소화하도록 학습된다. 기존의 비 화자 요소 정보 제거 기법들 (e.g., adversarial learning, gradient reversal)에 비하여 제안하는 기법은 휴리스틱한 학습 전략을 요하지 않기에, 보다 안정적인 학습이 가능하다. 제안하는 기법은 RSR2015 Part3 데이터셋에서 기존 기법들에 비하여 높은 성능을 보였으며, 성문 벡터 내의 녹음 기기 및 감정 정보를 억제하는데 효과적이었다.1. Introduction 1 2. Conventional embedding techniques for speaker recognition 7 2.1. i-vector framework 7 2.2. Deep learning-based speaker embedding 10 2.2.1. Deep embedding network 10 2.2.2. Conventional disentanglement methods 13 3. Unsupervised learning of total variability embedding for speaker verification with random digit strings 17 3.1. Introduction 17 3.2. Variational autoencoder 20 3.3. Variational inference model for non-linear total variability embedding 22 3.3.1. Maximum likelihood training 23 3.3.2. Non-linear feature extraction and speaker verification 25 3.4. Experiments 26 3.4.1. Databases 26 3.4.2. Experimental setup 27 3.4.3. Effect of the duration on the latent variable 28 3.4.4. Experiments with VAEs 30 3.4.5. Feature-level fusion of i-vector and latent variable 33 3.4.6. Score-level fusion of i-vector and latent variable 36 3.5. Summary 39 4. Adversarially learned total variability embedding for speaker recognition with random digit strings 41 4.1. Introduction 41 4.2. Adversarially learned inference 43 4.3. Adversarially learned feature extraction 45 4.3.1. Maximum likelihood criterion 47 4.3.2. Adversarially learned inference for non-linear i-vector extraction 49 4.3.3. Relationship to the VAE-based feature extractor 50 4.4. Experiments 51 4.4.1. Databases 51 4.4.2. Experimental setup 53 4.4.3. Effect of the duration on the latent variable 54 4.4.4. Speaker verification and identification with different utterance-level features 56 4.5. Summary 62 5. Disentangled speaker and nuisance attribute embedding for robust speaker verification 63 5.1. Introduction 63 5.2. Joint factor embedding 67 5.2.1. Joint factor embedding network architecture 67 5.2.2. Training for joint factor embedding 69 5.3. Experiments 71 5.3.1. Channel disentanglement experiments 71 5.3.2. Emotion disentanglement 82 5.3.3. Noise disentanglement 86 5.4. Summary 87 6. Conclusion 93 Bibliography 95 Abstract (Korean) 105Docto
    corecore