30,721 research outputs found

    Duplicate Detection in Probabilistic Data

    Get PDF
    Collected data often contains uncertainties. Probabilistic databases have been proposed to manage uncertain data. To combine data from multiple autonomous probabilistic databases, an integration of probabilistic data has to be performed. Until now, however, data integration approaches have focused on the integration of certain source data (relational or XML). There is no work on the integration of uncertain (esp. probabilistic) source data so far. In this paper, we present a first step towards a concise consolidation of probabilistic data. We focus on duplicate detection as a representative and essential step in an integration process. We present techniques for identifying multiple probabilistic representations of the same real-world entities. Furthermore, for increasing the efficiency of the duplicate detection process we introduce search space reduction methods adapted to probabilistic data

    Element Distinctness, Frequency Moments, and Sliding Windows

    Full text link
    We derive new time-space tradeoff lower bounds and algorithms for exactly computing statistics of input data, including frequency moments, element distinctness, and order statistics, that are simple to calculate for sorted data. We develop a randomized algorithm for the element distinctness problem whose time T and space S satisfy T in O (n^{3/2}/S^{1/2}), smaller than previous lower bounds for comparison-based algorithms, showing that element distinctness is strictly easier than sorting for randomized branching programs. This algorithm is based on a new time and space efficient algorithm for finding all collisions of a function f from a finite set to itself that are reachable by iterating f from a given set of starting points. We further show that our element distinctness algorithm can be extended at only a polylogarithmic factor cost to solve the element distinctness problem over sliding windows, where the task is to take an input of length 2n-1 and produce an output for each window of length n, giving n outputs in total. In contrast, we show a time-space tradeoff lower bound of T in Omega(n^2/S) for randomized branching programs to compute the number of distinct elements over sliding windows. The same lower bound holds for computing the low-order bit of F_0 and computing any frequency moment F_k, k neq 1. This shows that those frequency moments and the decision problem F_0 mod 2 are strictly harder than element distinctness. We complement this lower bound with a T in O(n^2/S) comparison-based deterministic RAM algorithm for exactly computing F_k over sliding windows, nearly matching both our lower bound for the sliding-window version and the comparison-based lower bounds for the single-window version. We further exhibit a quantum algorithm for F_0 over sliding windows with T in O(n^{3/2}/S^{1/2}). Finally, we consider the computations of order statistics over sliding windows.Comment: arXiv admin note: substantial text overlap with arXiv:1212.437

    biobambam: tools for read pair collation based algorithms on BAM files

    Get PDF
    Sequence alignment data is often ordered by coordinate (id of the reference sequence plus position on the sequence where the fragment was mapped) when stored in BAM files, as this simplifies the extraction of variants between the mapped data and the reference or of variants within the mapped data. In this order paired reads are usually separated in the file, which complicates some other applications like duplicate marking or conversion to the FastQ format which require to access the full information of the pairs. In this paper we introduce biobambam, an API for efficient BAM file reading supporting the efficient collation of alignments by read name without performing a complete resorting of the input file and some tools based on this API performing tasks like marking duplicate reads and conversion to the FastQ format. In comparison with previous approaches to problems involving the collation of alignments by read name like the BAM to FastQ or duplication marking utilities in the Picard suite the approach of biobambam can often perform an equivalent task more efficiently in terms of the required main memory and run-time.Comment: 17 pages, 3 figures, 2 table
    corecore