11 research outputs found

    Sufficient optimality criteria and duality for multiobjective variational control problems with G-type I objective and constraint functions

    Get PDF
    In the paper, we introduce the concepts of G-type I and generalized G-type I functions for a new class of nonconvex multiobjective variational control problems. For such nonconvex vector optimization problems, we prove sufficient optimality conditions for weakly efficiency, efficiency and properly efficiency under assumptions that the functions constituting them are G-type I and/or generalized G-type I objective and constraint functions. Further, for the considered multiobjective variational control problem, its dual multiobjective variational control problem is given and several duality results are established under (generalized) G-type I objective and constraint functions

    Proper efficiency and duality for a new class of nonconvex multitime multiobjective variational problems

    Get PDF
    In this paper, a new class of generalized of nonconvex multitime multiobjective variational problems is considered. We prove the sufficient optimality conditions for efficiency and proper efficiency in the considered multitime multiobjective variational problems with univex functionals. Further, for such vector variational problems, various duality results in the sense of Mond-Weir and in the sense of Wolfe are established under univexity. The results established in the paper extend and generalize results existing in the literature for such vector variational problems

    Some contributions to optimality criteria and duality in Multiobjective mathematical programming.

    Get PDF
    This thesis entitled, “some contributions to optimality criteria and duality in multiobjective mathematical programming”, offers an extensive study on optimality, duality and mixed duality in a variety of multiobjective mathematical programming that includes nondifferentiable nonlinear programming, variational problems containing square roots of a certain quadratic forms and support functions which are prominent nondifferentiable convex functions. This thesis also deals with optimality, duality and mixed duality for differentiable and nondifferentiable variational problems involving higher order derivatives, and presents a close relationship between the results of continuous programming problems through the problems with natural boundary conditions between results of their counter parts in nonlinear programming. Finally it formulates a pair of mixed symmetric and self dual differentiable variational problems and gives the validation of various duality results under appropriate invexity and generalized invexity hypotheses. These results are further extended to a nondifferentiable case that involves support functions.Digital copy of Thesis.University of Kashmir

    Duality in mathematical programming.

    Get PDF
    In this thesis entitled, “Duality in Mathematical Programming”, the emphasis is given on formulation and conceptualization of the concepts of second-order duality, second-order mixed duality, second-order symmetric duality in a variety of nondifferentiable nonlinear programming under suitable second-order convexity/second-order invexity and generalized second-order convexity / generalized second-order invexity. Throughout the thesis nondifferentiablity occurs due to square root function and support functions. A support function which is more general than square root of a positive definite quadratic form. This thesis also addresses second-order duality in variational problems under suitable second-order invexity/secondorder generalized invexity. The duality results obtained for the variational problems are shown to be a dynamic generalization for thesis of nonlinear programming problem.Digital copy of Thesis.University of Kashmir

    Chance-constrained approach for decentralized supply chain network under uncertain cost

    Get PDF
    A decentralized supply chain network under uncertain cost is studied to obtain the optimal decisions of the enterprises in a situation in which the cost is uncertain. The supply chain network members adopt a chance-constrained approach to make decisions. The second-order cone-constrained variational inequality problem is used to construct the chance-constrained supply chain network equilibrium model. Then, the existence and uniqueness properties of the proposed equilibrium model are discussed under some mild assumptions. For the discontinuous functions in the feasible region of the model, the proposed model is converted to a second-order cone complementarity problem. The numerical results show that the uncertainty and risk attitude of retailers and manufacturers have different effects on supply chain network members. When the risk attitude is high, a small change in the risk attitude will significantly change all decisions of supply chain members. If the supply chain member is affected by the uncertainty positively, its profit will increase as its risk attitude increases. Moreover, it is appropriate to adopt a chance-constrained approach when the supply chain members can estimate the distributions of the competitor's strategies

    Symbolic approaches and artificial intelligence algorithms for solving multi-objective optimisation problems

    Get PDF
    Problems that have more than one objective function are of great importance in engineering sciences and many other disciplines. This class of problems are known as multi-objective optimisation problems (or multicriteria). The difficulty here lies in the conflict between the various objective functions. Due to this conflict, one cannot find a single ideal solution which simultaneously satisfies all the objectives. But instead one can find the set of Pareto-optimal solutions (Pareto-optimal set) and consequently the Pareto-optimal front is established. Finding these solutions plays an important role in multi-objective optimisation problems and mathematically the problem is considered to be solved when the Pareto-optimal set, i.e. the set of all compromise solutions is found. The Pareto-optimal set may contain information that can help the designer make a decision and thus arrive at better trade-off solutions. The aim of this research is to develop new multi-objective optimisation symbolic algorithms capable of detecting relationship(s) among decision variables that can be used for constructing the analytical formula of Pareto-optimal front based on the extension of the current optimality conditions. A literature survey of theoretical and evolutionary computation techniques for handling multiple objectives, constraints and variable interaction highlights a lack of techniques to handle variable interaction. This research, therefore, focuses on the development of techniques for detecting the relationships between the decision variables (variable interaction) in the presence of multiple objectives and constraints. It attempts to fill the gap in this research by formally extending the theoretical results (optimality conditions). The research then proposes first-order multi-objective symbolic algorithm or MOSA-I and second-order multi-objective symbolic algorithm or MOSA-II that are capable of detecting the variable interaction. The performance of these algorithms is analysed and compared to a current state-of-the-art optimisation algorithm using popular test problems. The performance of the MOSA-II algorithm is finally validated using three appropriately chosen problems from literature. In this way, this research proposes a fully tested and validated methodology for dealing with multi-objective optimisation problems. In conclusion, this research proposes two new symbolic algorithms that are used for identifying the variable interaction responsible for constructing Pareto-optimal front among objectives in multi-objective optimisation problems. This is completed based on a development and relaxation of the first and second-order optimality conditions of Karush-Kuhn-Tucker.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    A vision-based optical character recognition system for real-time identification of tractors in a port container terminal

    Get PDF
    Automation has been seen as a promising solution to increase the productivity of modern sea port container terminals. The potential of increase in throughput, work efficiency and reduction of labor cost have lured stick holders to strive for the introduction of automation in the overall terminal operation. A specific container handling process that is readily amenable to automation is the deployment and control of gantry cranes in the container yard of a container terminal where typical operations of truck identification, loading and unloading containers, and job management are primarily performed manually in a typical terminal. To facilitate the overall automation of the gantry crane operation, we devised an approach for the real-time identification of tractors through the recognition of the corresponding number plates that are located on top of the tractor cabin. With this crucial piece of information, remote or automated yard operations can then be performed. A machine vision-based system is introduced whereby these number plates are read and identified in real-time while the tractors are operating in the terminal. In this paper, we present the design and implementation of the system and highlight the major difficulties encountered including the recognition of character information printed on the number plates due to poor image integrity. Working solutions are proposed to address these problems which are incorporated in the overall identification system.postprin

    Job shop scheduling with artificial immune systems

    Get PDF
    The job shop scheduling is complex due to the dynamic environment. When the information of the jobs and machines are pre-defined and no unexpected events occur, the job shop is static. However, the real scheduling environment is always dynamic due to the constantly changing information and different uncertainties. This study discusses this complex job shop scheduling environment, and applies the AIS theory and switching strategy that changes the sequencing approach to the dispatching approach by taking into account the system status to solve this problem. AIS is a biological inspired computational paradigm that simulates the mechanisms of the biological immune system. Therefore, AIS presents appealing features of immune system that make AIS unique from other evolutionary intelligent algorithm, such as self-learning, long-lasting memory, cross reactive response, discrimination of self from non-self, fault tolerance, and strong adaptability to the environment. These features of AIS are successfully used in this study to solve the job shop scheduling problem. When the job shop environment is static, sequencing approach based on the clonal selection theory and immune network theory of AIS is applied. This approach achieves great performance, especially for small size problems in terms of computation time. The feature of long-lasting memory is demonstrated to be able to accelerate the convergence rate of the algorithm and reduce the computation time. When some unexpected events occasionally arrive at the job shop and disrupt the static environment, an extended deterministic dendritic cell algorithm (DCA) based on the DCA theory of AIS is proposed to arrange the rescheduling process to balance the efficiency and stability of the system. When the disturbances continuously occur, such as the continuous jobs arrival, the sequencing approach is changed to the dispatching approach that involves the priority dispatching rules (PDRs). The immune network theory of AIS is applied to propose an idiotypic network model of PDRs to arrange the application of various dispatching rules. The experiments show that the proposed network model presents strong adaptability to the dynamic job shop scheduling environment.postprin
    corecore