939 research outputs found

    Dynamics for holographic codes

    Get PDF
    We describe how to introduce dynamics for the holographic states and codes introduced by Pastawski, Yoshida, Harlow and Preskill. This task requires the definition of a continuous limit of the kinematical Hilbert space which we argue may be achieved via the semicontinuous limit of Jones. Dynamics is then introduced by building a unitary representation of a group known as Thompson's group T, which is closely related to the conformal group in 1+1 dimensions. The bulk Hilbert space is realised as a special subspace of the semicontinuous limit Hilbert space spanned by a class of distinguished states which can be assigned a discrete bulk geometry. The analogue of the group of large bulk diffeomorphisms is given by a unitary representation of the Ptolemy group Pt, on the bulk Hilbert space thus realising a toy model of the AdS/CFT correspondence which we call the Pt/T correspondence.Comment: 40 pages (revised version submitted to journal). See video of related talk: https://www.youtube.com/watch?v=xc2KIa2LDF

    Hierarchical Models for Independence Structures of Networks

    Get PDF
    We introduce a new family of network models, called hierarchical network models, that allow us to represent in an explicit manner the stochastic dependence among the dyads (random ties) of the network. In particular, each member of this family can be associated with a graphical model defining conditional independence clauses among the dyads of the network, called the dependency graph. Every network model with dyadic independence assumption can be generalized to construct members of this new family. Using this new framework, we generalize the Erd\"os-R\'enyi and beta-models to create hierarchical Erd\"os-R\'enyi and beta-models. We describe various methods for parameter estimation as well as simulation studies for models with sparse dependency graphs.Comment: 19 pages, 7 figure

    Lines Missing Every Random Point

    Full text link
    We prove that there is, in every direction in Euclidean space, a line that misses every computably random point. We also prove that there exist, in every direction in Euclidean space, arbitrarily long line segments missing every double exponential time random point.Comment: Added a section: "Betting in Doubly Exponential Time.

    Asymptotically rigid mapping class groups and Thompson's groups

    Full text link
    We consider Thompson's groups from the perspective of mapping class groups of surfaces of infinite type. This point of view leads us to the braided Thompson groups, which are extensions of Thompson's groups by infinite (spherical) braid groups. We will outline the main features of these groups and some applications to the quantization of Teichm\"uller spaces. The chapter provides an introduction to the subject with an emphasis on some of the authors results.Comment: survey 77

    A new green's function formulation for modeling homogeneous objects in layered medium

    Get PDF
    A new Green's function formulation is developed systematically for modeling general homogeneous (dielectric or magnetic) objects in a layered medium. The dyadic form of the Green's function is first derived based on the pilot vector potential approach. The matrix representation in the moment method implementation is then derived by applying integration by parts and vector identities. The line integral issue in the matrix representation is investigated, based on the continuity property of the propagation factor and the consistency of the primary term and the secondary term. The extinction theorem is then revisited in the inhomogeneous background and a surface integral equation for general homogeneous objects is set up. Different from the popular mixed potential integral equation formulation, this method avoids the artificial definition of scalar potential. The singularity of the matrix representation of the Green's function can be made as weak as possible. Several numerical results are demonstrated to validate the formulation developed in this paper. Finally, the duality principle of the layered medium Green's function is discussed in the appendix to make the formulation succinct. © 1963-2012 IEEE.published_or_final_versio

    On the restriction problem for discrete paraboloid in lower dimension

    Get PDF
    We apply geometric incidence estimates in positive characteristic to prove the optimal L2→L3L^2 \to L^3 Fourier extension estimate for the paraboloid in the four-dimensional vector space over a prime residue field. In three dimensions, when −1-1 is not a square, we prove an L2→L329L^2 \to L^{\frac{32}{9} } extension estimate, improving the previously known exponent 6819.\frac{68}{19}.Comment: Final versio
    • …
    corecore