3 research outputs found

    Duality of log-polar image representations in the space and spatial-frequency domains

    Full text link

    Duality between Foveatization and Multiscale Local Spectrum. Estimation

    No full text
    In this work we demonstrate the relationship existing between two important issues in vision: multi-scale local spectrum analysis, and log-polar foveatization. We show that, when applying a continuous set of self-similar (rotated and scaled) band-pass filters to estimate the local spectrum at a given point of attention of the image, the inverse Fourier transform of this local spectrum is a log-polar foveated version of the original image at that position. Both the local spectrum and its associated foveated image can be obtained through log-polar warping of the spectral/spatial domain followed by a conventional invariant low-pass filtering and the corresponding inverse warping. Furthermore, the low-pass filters in the warped space and frequency domains are mirror versions of each other. Thus, filters with mirror symmetry under the log-polar warping are self-dual, and make the foveatization process commute with the Fourier transform. Nevertheless, in order to implement a fovea that can be easily moved across the image, it is preferable to use a fixed bank of steerable filters, instead of applying log-polar warpings with different centers. Using low-pass scalable filters we have implemented a real-time moving fovea. We believe that a dual finite spatial/spectral local representation of images could be a very powerful tool for many visual tasks, which could benefit from a dual explicit representation in space and spatial frequency, as well as from the rotation and scale invariance naturally achieved in both domains. 1

    <title>Duality between foveatization and multiscale local spectrum estimation</title>

    No full text
    corecore