3,438 research outputs found

    Multiple Access Channels with Combined Cooperation and Partial Cribbing

    Full text link
    In this paper we study the multiple access channel (MAC) with combined cooperation and partial cribbing and characterize its capacity region. Cooperation means that the two encoders send a message to one another via a rate-limited link prior to transmission, while partial cribbing means that each of the two encoders obtains a deterministic function of the other encoder's output with or without delay. Prior work in this field dealt separately with cooperation and partial cribbing. However, by combining these two methods we can achieve significantly higher rates. Remarkably, the capacity region does not require an additional auxiliary random variable (RV) since the purpose of both cooperation and partial cribbing is to generate a common message between the encoders. In the proof we combine methods of block Markov coding, backward decoding, double rate-splitting, and joint typicality decoding. Furthermore, we present the Gaussian MAC with combined one-sided cooperation and quantized cribbing. For this model, we give an achievability scheme that shows how many cooperation or quantization bits are required in order to achieve a Gaussian MAC with full cooperation/cribbing capacity region. After establishing our main results, we consider two cases where only one auxiliary RV is needed. The first is a rate distortion dual setting for the MAC with a common message, a private message and combined cooperation and cribbing. The second is a state-dependent MAC with cooperation, where the state is known at a partially cribbing encoder and at the decoder. However, there are cases where more than one auxiliary RV is needed, e.g., when the cooperation and cribbing are not used for the same purposes. We present a MAC with an action-dependent state, where the action is based on the cooperation but not on the cribbing. Therefore, in this case more than one auxiliary RV is needed

    Empirical Coordination with Two-Sided State Information and Correlated Source and State

    Full text link
    The coordination of autonomous agents is a critical issue for decentralized communication networks. Instead of transmitting information, the agents interact in a coordinated manner in order to optimize a general objective function. A target joint probability distribution is achievable if there exists a code such that the sequences of symbols are jointly typical. The empirical coordination is strongly related to the joint source-channel coding with two-sided state information and correlated source and state. This problem is also connected to state communication and is open for non-causal encoder and decoder. We characterize the optimal solutions for perfect channel, for lossless decoding, for independent source and channel, for causal encoding and for causal decoding.Comment: 5 figures, 5 pages, presented at IEEE International Symposium on Information Theory (ISIT) 201

    Successive Refinement with Decoder Cooperation and its Channel Coding Duals

    Full text link
    We study cooperation in multi terminal source coding models involving successive refinement. Specifically, we study the case of a single encoder and two decoders, where the encoder provides a common description to both the decoders and a private description to only one of the decoders. The decoders cooperate via cribbing, i.e., the decoder with access only to the common description is allowed to observe, in addition, a deterministic function of the reconstruction symbols produced by the other. We characterize the fundamental performance limits in the respective settings of non-causal, strictly-causal and causal cribbing. We use a new coding scheme, referred to as Forward Encoding and Block Markov Decoding, which is a variant of one recently used by Cuff and Zhao for coordination via implicit communication. Finally, we use the insight gained to introduce and solve some dual channel coding scenarios involving Multiple Access Channels with cribbing.Comment: 55 pages, 15 figures, 8 tables, submitted to IEEE Transactions on Information Theory. A shorter version submitted to ISIT 201
    corecore