2 research outputs found

    AACT: Application-Aware Cooperative Time Allocation for Internet of Things

    Full text link
    As the number of Internet of Things (IoT) devices keeps increasing, data is required to be communicated and processed by these devices at unprecedented rates. Cooperation among wireless devices by exploiting Device-to-Device (D2D) connections is promising, where aggregated resources in a cooperative setup can be utilized by all devices, which would increase the total utility of the setup. In this paper, we focus on the resource allocation problem for cooperating IoT devices with multiple heterogeneous applications. In particular, we develop Application-Aware Cooperative Time allocation (AACT) framework, which optimizes the time that each application utilizes the aggregated system resources by taking into account heterogeneous device constraints and application requirements. AACT is grounded on the concept of Rolling Horizon Control (RHC) where decisions are made by iteratively solving a convex optimization problem over a moving control window of estimated system parameters. The simulation results demonstrate significant performance gains

    Hierarchical Fog-Cloud Computing for IoT Systems: A Computation Offloading Game

    Full text link
    Fog computing, which provides low-latency computing services at the network edge, is an enabler for the emerging Internet of Things (IoT) systems. In this paper, we study the allocation of fog computing resources to the IoT users in a hierarchical computing paradigm including fog and remote cloud computing services. We formulate a computation offloading game to model the competition between IoT users and allocate the limited processing power of fog nodes efficiently. Each user aims to maximize its own quality of experience (QoE), which reflects its satisfaction of using computing services in terms of the reduction in computation energy and delay. Utilizing a potential game approach, we prove the existence of a pure Nash equilibrium and provide an upper bound for the price of anarchy. Since the time complexity to reach the equilibrium increases exponentially in the number of users, we further propose a near-optimal resource allocation mechanism and prove that in a system with NN IoT users, it can achieve an ϵ\epsilon-Nash equilibrium in O(N/ϵ)O(N/\epsilon) time. Through numerical studies, we evaluate the users' QoE as well as the equilibrium efficiency. Our results reveal that by utilizing the proposed mechanism, more users benefit from computing services in comparison to an existing offloading mechanism. We further show that our proposed mechanism significantly reduces the computation delay and enables low-latency fog computing services for delay-sensitive IoT applications
    corecore