64 research outputs found

    Modality-Independent Teachers Meet Weakly-Supervised Audio-Visual Event Parser

    Full text link
    Audio-visual learning has been a major pillar of multi-modal machine learning, where the community mostly focused on its modality-aligned setting, i.e., the audio and visual modality are both assumed to signal the prediction target. With the Look, Listen, and Parse dataset (LLP), we investigate the under-explored unaligned setting, where the goal is to recognize audio and visual events in a video with only weak labels observed. Such weak video-level labels only tell what events happen without knowing the modality they are perceived (audio, visual, or both). To enhance learning in this challenging setting, we incorporate large-scale contrastively pre-trained models as the modality teachers. A simple, effective, and generic method, termed Visual-Audio Label Elaboration (VALOR), is innovated to harvest modality labels for the training events. Empirical studies show that the harvested labels significantly improve an attentional baseline by 8.0 in average F-score (Type@AV). Surprisingly, we found that modality-independent teachers outperform their modality-fused counterparts since they are noise-proof from the other potentially unaligned modality. Moreover, our best model achieves the new state-of-the-art on all metrics of LLP by a substantial margin (+5.4 F-score for Type@AV). VALOR is further generalized to Audio-Visual Event Localization and achieves the new state-of-the-art as well. Code is available at: https://github.com/Franklin905/VALOR

    Revisit Weakly-Supervised Audio-Visual Video Parsing from the Language Perspective

    Full text link
    We focus on the weakly-supervised audio-visual video parsing task (AVVP), which aims to identify and locate all the events in audio/visual modalities. Previous works only concentrate on video-level overall label denoising across modalities, but overlook the segment-level label noise, where adjacent video segments (i.e., 1-second video clips) may contain different events. However, recognizing events in the segment is challenging because its label could be any combination of events that occur in the video. To address this issue, we consider tackling AVVP from the language perspective, since language could freely describe how various events appear in each segment beyond fixed labels. Specifically, we design language prompts to describe all cases of event appearance for each video. Then, the similarity between language prompts and segments is calculated, where the event of the most similar prompt is regarded as the segment-level label. In addition, to deal with the mislabeled segments, we propose to perform dynamic re-weighting on the unreliable segments to adjust their labels. Experiments show that our simple yet effective approach outperforms state-of-the-art methods by a large margin

    Vision Transformers are Parameter-Efficient Audio-Visual Learners

    Full text link
    Vision transformers (ViTs) have achieved impressive results on various computer vision tasks in the last several years. In this work, we study the capability of frozen ViTs, pretrained only on visual data, to generalize to audio-visual data without finetuning any of its original parameters. To do so, we propose a latent audio-visual hybrid (LAVISH) adapter that adapts pretrained ViTs to audio-visual tasks by injecting a small number of trainable parameters into every layer of a frozen ViT. To efficiently fuse visual and audio cues, our LAVISH adapter uses a small set of latent tokens, which form an attention bottleneck, thus, eliminating the quadratic cost of standard cross-attention. Compared to the existing modality-specific audio-visual methods, our approach achieves competitive or even better performance on various audio-visual tasks while using fewer tunable parameters and without relying on costly audio pretraining or external audio encoders. Our code is available at https://genjib.github.io/project_page/LAVISH/Comment: CVPR 2023 Project Page: https://genjib.github.io/project_page/LAVISH

    Temporal Label-Refinement for Weakly-Supervised Audio-Visual Event Localization

    Full text link
    Audio-Visual Event Localization (AVEL) is the task of temporally localizing and classifying \emph{audio-visual events}, i.e., events simultaneously visible and audible in a video. In this paper, we solve AVEL in a weakly-supervised setting, where only video-level event labels (their presence/absence, but not their locations in time) are available as supervision for training. Our idea is to use a base model to estimate labels on the training data at a finer temporal resolution than at the video level and re-train the model with these labels. I.e., we determine the subset of labels for each \emph{slice} of frames in a training video by (i) replacing the frames outside the slice with those from a second video having no overlap in video-level labels, and (ii) feeding this synthetic video into the base model to extract labels for just the slice in question. To handle the out-of-distribution nature of our synthetic videos, we propose an auxiliary objective for the base model that induces more reliable predictions of the localized event labels as desired. Our three-stage pipeline outperforms several existing AVEL methods with no architectural changes and improves performance on a related weakly-supervised task as well
    • …
    corecore