7 research outputs found

    Tri-Polarized Holographic MIMO Surface in Near-Field: Channel Modeling and Precoding Design

    Full text link
    This paper investigates the utilization of triple polarization (TP) for multi-user (MU) holographic multiple-input multi-output surface (HMIMOS) wireless communication systems, targeting capacity boosting and diversity exploitation without enlarging the antenna array sizes. We specifically consider that both the transmitter and receiver are both equipped with an HMIMOS consisting of compact sub-wavelength TP patch antennas within the near-field (NF) regime. To characterize TP MU-HMIMOS systems, a TP NF channel model is constructed using the dyadic Green's function, whose characteristics are leveraged to design two precoding schemes for mitigating the cross-polarization and inter-user interference contributions. Specifically, a user-cluster-based precoding scheme assigns different users to one of three polarizations at the expense of the system's diversity, and a two-layer precoding scheme removes interference using the Gaussian elimination method at a high computational cost. The theoretical correlation analysis for HMIMOS in the NF region is also investigated, revealing that both the spacing of transmit patch antennas and user distance impact transmit correlation factors. Our numerical results show that the users far from transmitting HMIMOS experience higher correlation than those closer within the NF regime, resulting in a lower channel capacity. Meanwhile, in terms of channel capacity, TP HMIMOS can almost achieve 1.25 times gain compared with dual-polarized HMIMOS, and 3 times compared with conventional HMIMOS. In addition, the proposed two-layer precoding scheme combined with two-layer power allocation realizes a higher spectral efficiency than other schemes without sacrificing diversity

    Neural network aided computation of mutual information for adaptation of spatial modulation

    Get PDF
    © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Index Modulations, in the form of Spatial Modulation or Polarized Modulation, are gaining traction for both satellite and terrestrial next generation communication systems. Adaptive Spatial Modulation based links are needed to fully exploit the transmission capacity of time-variant channels. The adaptation of code and/or modulation requires a real-time evaluation of the channel achievable rates. Some existing results in the literature present a computational complexity which scales quadratically with the number of transmit antennas and the constellation order. Moreover, the accuracy of these approximations is low and it can lead to wrong Modulation and Coding Scheme selection. In this work we apply a Multilayer Feedforward Neural Network to compute the achievable rate of a generic Index Modulation link. The case of two antennas/polarizations is analyzed in depth, showing not only a one-hundred fold decrement of the Mean Square Error in the estimation of the capacity as compared with existing analytical approximations, but also a fifty times reduction of the computational complexity. Moreover, the extension to an arbitrary number of antennas is explained and supported with simulations. More generally, neural networks can be considered as promising candidates for the practical estimation of complex metrics in communication related settings.This work was funded by the Xunta de Galicia (Secretaria Xeral de Universidades) under a predoctoral scholarship (cofunded by the European Social Fund) and it was partially funded by the Agencia Estatal de Investigación (Spain) and the European Regional Development Fund (ERDF) under project MYRADA (TEC2016-75103-C2-2-R). It was also funded by the Xunta de Galicia and the ERDF (Agrupación Estratéxica Consolidada de Galicia accreditation 2016-2019). Furthermore, this work has received funding from the Spanish Agencia Estatal de Investigación under project TERESA, TEC2017-90093-C3-1-R (AEI/FEDER,UE); and from the Catalan Government (2017 SGR 891 and 2017 SGR 1479).Peer ReviewedPostprint (author's final draft

    Performance Enhancement by Exploiting the Spatial Domain for Cost, Space and Spectrum Constraint 5G Communication

    Get PDF
    With everlasting increase of connectivity demand and high speed data communication, lots of progresses have been made to provide a sufficient quality of services (QoS). Several advanced technologies have been the cornerstone of this trend in academia as well as in industry. Nevertheless, there are some implementation challenges, which needs to be closely investigated. In this thesis, among all challenges, we elaborate on those related to number of radio frequency (RF) chains and resource scarcity. The principle idea behind our proposed initial solution is to exploit the spatial domain as an additional degree of freedom. To be more specific, we benefit from spatial domain and antenna index in a multiple-input multiple-output (MIMO) system with dual-polarized (DP) antennas to convey the information. We develop a two-stage algorithm to groups the antennas which ends up to the optimum performance. Another advantage of this proposed algorithm is the complete complexity reduction of exhaustive search over the whole available space. Moreover, due to the continuous growth of demands which results in spectrum scarcity, we investigate the extension of long term evolution (LTE) spectrum. Such a paradigm shift is realized to offload part of the data to unlicensed band, which has been initially dedicated to other standardizations such as wireless local area networks (WLAN). As both LTE and wireless fidelity (Wi-Fi) networks have been widely deployed with solid infrastructures, it is significantly important to make their coexistence viable with a cost-effective approach which inherently requires the minimum protocol modification. Thus, we take the advantage of spatially located multiple antennas of base station (BS) and access point (AP) for the sake of beamforming and interference reduction. In addition to network coexistence, we approach the resource scarcity from the non-orthogonal multiple access (NOMA) point of view, where users share the frequency and time resources and are differentiated in power domain. In particular, we closely consider those users with limited number of RF chains. Similar to our first approach, we utilize spatial modulation (SM) in user end and after evaluating their performance, we propose to consider the capacity of SM NOMA to elaborate the impact of pairing on the achievable sum rate performance

    Multidimensional Index Modulation for 5G and Beyond Wireless Networks

    Get PDF
    This study examines the flexible utilization of existing IM techniques in a comprehensive manner to satisfy the challenging and diverse requirements of 5G and beyond services. After spatial modulation (SM), which transmits information bits through antenna indices, application of IM to orthogonal frequency division multiplexing (OFDM) subcarriers has opened the door for the extension of IM into different dimensions, such as radio frequency (RF) mirrors, time slots, codes, and dispersion matrices. Recent studies have introduced the concept of multidimensional IM by various combinations of one-dimensional IM techniques to provide higher spectral efficiency (SE) and better bit error rate (BER) performance at the expense of higher transmitter (Tx) and receiver (Rx) complexity. Despite the ongoing research on the design of new IM techniques and their implementation challenges, proper use of the available IM techniques to address different requirements of 5G and beyond networks is an open research area in the literature. For this reason, we first provide the dimensional-based categorization of available IM domains and review the existing IM types regarding this categorization. Then, we develop a framework that investigates the efficient utilization of these techniques and establishes a link between the IM schemes and 5G services, namely enhanced mobile broadband (eMBB), massive machine-type communications (mMTC), and ultra-reliable low-latency communication (URLLC). Additionally, this work defines key performance indicators (KPIs) to quantify the advantages and disadvantages of IM techniques in time, frequency, space, and code dimensions. Finally, future recommendations are given regarding the design of flexible IM-based communication systems for 5G and beyond wireless networks.Comment: This work has been submitted to Proceedings of the IEEE for possible publicatio

    Dual-Polarized Spatial Modulation Over Correlated Fading Channels

    No full text
    corecore