1 research outputs found

    ๋ฉ”๋ชจ๋ฆฌ ์ธํ„ฐํŽ˜์ด์Šค๋ฅผ ์œ„ํ•œ ๋ฉ€ํ‹ฐ ๋ ˆ๋ฒจ ๋‹จ์ผ ์ข…๋‹จ ์†ก์‹ ๊ธฐ ์„ค๊ณ„

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2020. 8. ๊น€์ˆ˜ํ™˜.๋ณธ ์—ฐ๊ตฌ์—์„œ ๋ฉ”๋ชจ๋ฆฌ ์ธํ„ฐํŽ˜์ด์Šค๋ฅผ ์œ„ํ•œ ๋ฉ€ํ‹ฐ ๋ ˆ๋ฒจ ์†ก์‹ ๊ธฐ๊ฐ€ ์ œ์‹œ๋˜์—ˆ๋‹ค. ํ”„๋กœ์„ธ์„œ์™€ ๋ฉ”๋ชจ๋ฆฌ ๊ฐ„์˜ ์„ฑ๋Šฅ ์ฐจ์ด๊ฐ€ ๋งค๋…„ ๊ณ„์† ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ, ๋ฉ”๋ชจ๋ฆฌ๋Š” ์ „์ฒด ์‹œ์Šคํ…œ์˜ ๋ณ‘๋ชฉ์ ์ด ๋˜๊ณ ์žˆ๋‹ค. ์šฐ๋ฆฌ๋Š” ๋ฉ”๋ชจ๋ฆฌ ๋Œ€์—ญํญ์„ ๋Š˜๋ฆฌ๊ธฐ ์œ„ํ•ด PAM-4 ๋‹จ์ผ ์ข…๋‹จ ์†ก์‹ ๊ธฐ๋ฅผ ์ œ์•ˆํ•˜์˜€๊ณ , ๋ฉ€ํ‹ฐ ๋žญํฌ ๋ฉ”๋ชจ๋ฆฌ๋ฅผ ์œ„ํ•œ duobinary ๋‹จ์ผ ์ข…๋‹จ ์†ก์‹ ๊ธฐ๋ฅผ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ œ์•ˆ๋œ PAM-4 ์†ก์‹ ๊ธฐ์˜ ๋“œ๋ผ์ด๋ฒ„๋Š” ๋†’์€ ์„ ํ˜•์„ฑ๊ณผ ์ž„ํ”ผ๋˜์Šค ์ •ํ•ฉ์„ ๋™์‹œ์— ๋งŒ์กฑํ•œ๋‹ค. ๋˜ํ•œ ์ €ํ•ญ์ด๋‚˜ ์ธ๋•ํ„ฐ๋ฅผ ์‚ฌ์šฉํ•˜์ง€ ์•Š์•„ ์ž‘์€ ๋ฉด์ ์„ ์ฐจ์ง€ํ•œ๋‹ค. ์ œ์•ˆ๋œ ZQ ์บ˜๋ฆฌ๋ธŒ๋ ˆ์ด์…˜์€ ์„ธ๊ฐœ์˜ ๊ต์ • ์ ์„ ๊ฐ€์ง€๊ณ  ์žˆ์–ด ์†ก์‹ ๊ธฐ๊ฐ€ ์ •ํ™•ํ•œ ์ž„ํ”ผ๋˜์Šค์™€ ์„ ํ˜•์ ์ธ ์ถœ๋ ฅ์„ ๊ฐ–๊ฒŒ ํ•œ๋‹ค. ํ”„๋กœํ†  ํƒ€์ž…์€ 65nm CMOS ๊ณต์ •์œผ๋กœ ์ œ์ž‘๋˜์—ˆ๊ณ  ์†ก์‹ ๊ธฐ๋Š” 0.0333mm2์˜ ๋ฉด์ ์„ ์ฐจ์ง€ํ•œ๋‹ค. ์ธก์ •๋œ 28Gb/s์—์„œ์˜ eye๋Š” 18.3ps์˜ ๊ธธ์ด์™€ 42.4mV์˜ ๋†’์ด๋ฅผ ๊ฐ–๊ณ , ์—๋„ˆ์ง€ ํšจ์œจ์€ 0.64pJ/bit์ด๋‹ค. ZQ ์บ˜๋ฆฌ๋ธŒ๋ ˆ์ด์…˜๊ณผ ํ•จ๊ป˜ ์ธก์ •๋œ RLM์€ 0.993์ด๋‹ค. ๋ฉ”๋ชจ๋ฆฌ์˜ ์šฉ๋Ÿ‰์„ ๋Š˜๋ฆฌ๊ธฐ ์œ„ํ•ด ํ•˜๋‚˜์˜ ํŒจํ‚ค์ง€์— ์—ฌ๋Ÿฌ ๊ฐœ์˜ DRAM ๋‹ค์ด๋ฅผ ์ˆ˜์ง์œผ๋กœ ์Œ“๋Š” ํŒจํ‚ค์ง•์€ ๋ฉ”๋ชจ๋ฆฌ์˜ ์ค‘์•™ ํŒจ๋“œ ๊ตฌ์กฐ์™€ ๊ฒฐํ•ฉ๋˜์–ด ์งง์€ ๋ฐ˜์‚ฌ๋ฅผ ์•ผ๊ธฐํ•˜๋Š” ์Šคํ…์„ ๋งŒ๋“ ๋‹ค. ์šฐ๋ฆฌ๋Š” ์ด ๋ฌธ์ œ๋ฅผ ์™„ํ™”ํ•˜๊ธฐ์œ„ํ•ด ๋ฐ˜์‚ฌ ๊ธฐ๋ฐ˜ duobinary ์†ก์‹ ๊ธฐ๋ฅผ ์ œ์•ˆํ–ˆ๋‹ค. ์ด ์†ก์‹ ๊ธฐ๋Š” ๋ฐ˜์‚ฌ๋ฅผ ์ด์šฉํ•˜์—ฌ duobinary signaling์„ ํ•œ๋‹ค. 2ํƒญ ๋ฐ˜๋Œ€ ๊ฐ•์กฐ ๊ธฐ์ˆ ๊ณผ ์Šฌ๋ฃจ ๋ ˆ์ดํŠธ ์กฐ์ ˆ ๊ธฐ์ˆ ์ด ์‹ ํ˜ธ ์™„๊ฒฐ์„ฑ์„ ๋†’์ด๊ธฐ ์œ„ํ•ด ์‚ฌ์šฉ๋˜์—ˆ๋‹ค. NRZ eye๊ฐ€ ์—†๋Š” 10Gb/s์—์„œ ์ธก์ •๋œ duobinary eye๋Š” 63.6ps ๊ธธ์ด์™€ 70.8mV์˜ ๋†’์ด๋ฅผ ๊ฐ–๋Š”๋‹ค. ์ธก์ •๋œ ์—๋„ˆ์ง€ ํšจ์œจ์€ 1.38pJ/bit์ด๋‹ค.Multi-level transmitters for memory interfaces have been presented. The performance gap between processor and memory has been increased by 50% every year, making memory to be a bottle neck of the overall system. To increase memory bandwidth, we have proposed a PAM-4 single-ended transmitter. To compensate for the side effect of the multi-rank memory, we have proposed a reflection-based duobinary transmitter. The proposed PAM-4 transmitter has the driver, which simultaneously satisfies impedance matching and high linearity. The driver occupies a small area due to a resistorless and inductorless structure. The proposed ZQ calibration for PAM-4 has three calibration points, which allow the transmitter to have accurate impedance and linear output. The ZQ calibration considers impedance variation of both the driver and the receiver. A prototype has been fabricated in 65nm CMOS process, and the transmitter occupies 0.0333mm2. The measured eye has a width of 18.3ps and a height of 42.4mV at 28Gb/s, and the measured energy efficiency is 0.64pJ/b. The measured RLM with the 3-point ZQ calibration is 0.993. To increase memory density, the stacked die packaging with multiple DRAM die stacked vertically in one package is widely used. However, combined with the center-pad structure, the structure creates stubs that cause short reflections. We have proposed the reflection-based duobinary transmitter to mitigate this problem. The proposed transmitter uses reflection for duobinary signaling. The 2-tap opposite FFE and the slew-rate control are used to increase signal integrity. The measured duobinary eye at 10Gb/s has a width of 63.6ps and a height of 70.8mV while there is no NRZ eye opening. The measured energy efficiency is 1.38pJ/bit.CHAPTER 1 INTRODUCTION 1 1.1 MOTIVATION 1 1.2 THESIS ORGANIZATION 8 CHAPTER 2 MUTI-LEVEL SIGNALING 9 2.1 PAM-4 SIGNALING 9 2.2 DESIGN CONSIDERATIONS FOR PAM-4 TRANSMITTER 16 2.2.1 LEVEL SEPARATION MISMATCH RATIO (RLM) 17 2.2.2 IMPEDANCE MATCHING 19 2.2.3 PRIOR ARTS 21 2.3 DUOBINARY SIGNALING 24 CHAPTER 3 HIGH-LINEARITY AND IMPEDANCE-MATCHED PAM-4 TRANSMITTER 30 3.1 OVERALL ARCHITECTURE 31 3.2 SINGLE-ENDED IMPEDANCE-MATCHED PAM-4 DRIVER 33 3.3 3-POINT ZQ CALIBRATION FOR PAM-4 47 CHAPTER 4 REFLECTION-BASED DUOBINARY TRANSMITTER 57 4.1 BIDIRECTIONAL DUAL-RANK MEMORY SYSTEM 58 4.2 CONCEPT OF REFLECTION-BASED DUOBINARY SIGNALING 66 4.3 REFLECTION-BASED DUOBINARY TRANSMITTER 70 4.3.1 OVERALL ARCHITECTURE 70 4.3.2 EQUALIZATION FOR REFLECTION-BASED DUOBINARY SIGNALING 72 4.3.3 2D BINARY-SEGMENTED DRIVER 75 CHAPTER 5 EXPERIMENTAL RESULTS 77 5.1 HIGH-LINEARITY AND IMPEDANCE-MATCHED PAM-4 TRANSMITTER 77 5.2 REFLECTION-BASED DUOBINARY TRANSMITTER 84 CHAPTER 6 92 CONCLUSION 92 BIBLIOGRAPHY 94Docto
    corecore