376 research outputs found

    The Matrix Ansatz, Orthogonal Polynomials, and Permutations

    Get PDF
    In this paper we outline a Matrix Ansatz approach to some problems of combinatorial enumeration. The idea is that many interesting quantities can be expressed in terms of products of matrices, where the matrices obey certain relations. We illustrate this approach with applications to moments of orthogonal polynomials, permutations, signed permutations, and tableaux.Comment: to appear in Advances in Applied Mathematics, special issue for Dennis Stanto

    Partitions of Matrix Spaces With an Application to qq-Rook Polynomials

    Full text link
    We study the row-space partition and the pivot partition on the matrix space Fqn×m\mathbb{F}_q^{n \times m}. We show that both these partitions are reflexive and that the row-space partition is self-dual. Moreover, using various combinatorial methods, we explicitly compute the Krawtchouk coefficients associated with these partitions. This establishes MacWilliams-type identities for the row-space and pivot enumerators of linear rank-metric codes. We then generalize the Singleton-like bound for rank-metric codes, and introduce two new concepts of code extremality. Both of them generalize the notion of MRD codes and are preserved by trace-duality. Moreover, codes that are extremal according to either notion satisfy strong rigidity properties analogous to those of MRD codes. As an application of our results to combinatorics, we give closed formulas for the qq-rook polynomials associated with Ferrers diagram boards. Moreover, we exploit connections between matrices over finite fields and rook placements to prove that the number of matrices of rank rr over Fq\mathbb{F}_q supported on a Ferrers diagram is a polynomial in qq, whose degree is strictly increasing in rr. Finally, we investigate the natural analogues of the MacWilliams Extension Theorem for the rank, the row-space, and the pivot partitions

    Symmetric Grothendieck polynomials, skew Cauchy identities, and dual filtered Young graphs

    Full text link
    Symmetric Grothendieck polynomials are analogues of Schur polynomials in the K-theory of Grassmannians. We build dual families of symmetric Grothendieck polynomials using Schur operators. With this approach we prove skew Cauchy identity and then derive various applications: skew Pieri rules, dual filtrations of Young's lattice, generating series and enumerative identities. We also give a new explanation of the finite expansion property for products of Grothendieck polynomials

    Pieri rules for the K-theory of cominuscule Grassmannians

    Full text link
    We prove Pieri formulas for the multiplication with special Schubert classes in the K-theory of all cominuscule Grassmannians. For Grassmannians of type A this gives a new proof of a formula of Lenart. Our formula is new for Lagrangian Grassmannians, and for orthogonal Grassmannians it proves a special case of a conjectural Littlewood-Richardson rule of Thomas and Yong. Recent work of Thomas and Yong and of E. Clifford has shown that the full Littlewood-Richardson rule for orthogonal Grassmannians follows from the Pieri case proved here. We describe the K-theoretic Pieri coefficients both as integers determined by positive recursive identities and as the number of certain tableaux. The proof is based on a computation of the sheaf Euler characteristic of triple intersections of Schubert varieties, where at least one Schubert variety is special

    Stammering tableaux

    Full text link
    The PASEP (Partially Asymmetric Simple Exclusion Process) is a probabilistic model of moving particles, which is of great interest in combinatorics, since it appeared that its partition function counts some tableaux. These tableaux have several variants such as permutations tableaux, alternative tableaux, tree- like tableaux, Dyck tableaux, etc. We introduce in this context certain excursions in Young's lattice, that we call stammering tableaux (by analogy with oscillating tableaux, vacillating tableaux, hesitating tableaux). Some natural bijections make a link with rook placements in a double staircase, chains of Dyck paths obtained by successive addition of ribbons, Laguerre histories, Dyck tableaux, etc.Comment: Clarification and better exposition thanks reviewer's report
    corecore