531,524 research outputs found

    Quantization of Drinfeld Zastava in type A

    Full text link
    Drinfeld Zastava is a certain closure of the moduli space of maps from the projective line to the Kashiwara flag scheme of the affine Lie algebra sl^n\hat{sl}_n. We introduce an affine, reduced, irreducible, normal quiver variety ZZ which maps to the Zastava space bijectively at the level of complex points. The natural Poisson structure on the Zastava space can be described on ZZ in terms of Hamiltonian reduction of a certain Poisson subvariety of the dual space of a (nonsemisimple) Lie algebra. The quantum Hamiltonian reduction of the corresponding quotient of its universal enveloping algebra produces a quantization YY of the coordinate ring of ZZ. The same quantization was obtained in the finite (as opposed to the affine) case generically in arXiv:math/0409031. We prove that, for generic values of quantization parameters, YY is a quotient of the affine Borel Yangian.Comment: 33 page

    Harmonic analysis on the infinite symmetric group

    Full text link
    Let S be the group of finite permutations of the naturals 1,2,... The subject of the paper is harmonic analysis for the Gelfand pair (G,K), where G stands for the product of two copies of S while K is the diagonal subgroup in G. The spherical dual to (G,K) (that is, the set of irreducible spherical unitary representations) is an infinite-dimensional space. For such Gelfand pairs, the conventional scheme of harmonic analysis is not applicable and it has to be suitably modified. We construct a compactification of S called the space of virtual permutations. It is no longer a group but it is still a G-space. On this space, there exists a unique G-invariant probability measure which should be viewed as a true substitute of Haar measure. More generally, we define a 1-parameter family of probability measures on virtual permutations, which are quasi-invariant under the action of G. Using these measures we construct a family {T_z} of unitary representations of G depending on a complex parameter z. We prove that any T_z admits a unique decomposition into a multiplicity free integral of irreducible spherical representations of (G,K). Moreover, the spectral types of different representations (which are defined by measures on the spherical dual) are pairwise disjoint. Our main result concerns the case of integral values of parameter z: then we obtain an explicit decomposition of T_z into irreducibles. The case of nonintegral z is quite different. It was studied by Borodin and Olshanski, see e.g. the survey math.RT/0311369.Comment: AMS Tex, 80 pages, no figure

    Classical and Quantum sl(1|2) Superalgebras, Casimir Operators and Quantum Chain Hamiltonians

    Full text link
    We examine the two parameter deformed superalgebra Uqs(sl(12))U_{qs}(sl(1|2)) and use the results in the construction of quantum chain Hamiltonians. This study is done both in the framework of the Serre presentation and in the RR-matrix scheme of Faddeev, Reshetikhin and Takhtajan (FRT). We show that there exists an infinite number of Casimir operators, indexed by integers p>1p > 1 in the undeformed case and by pZp \in Z in the deformed case, which obey quadratic relations. The construction of the dual superalgebra of functions on SLqs(12)SL_{qs}(1|2) is also given and higher tensor product representations are discussed. Finally, we construct quantum chain Hamiltonians based on the Casimir operators. In the deformed case we find two Hamiltonians which describe deformed tJt-J models.Comment: 27 pages, LaTeX, one reference moved and one formula adde

    Det-Det Correlations for Quantum Maps: Dual Pair and Saddle-Point Analyses

    Full text link
    An attempt is made to clarify the ballistic non-linear sigma model formalism recently proposed for quantum chaotic systems, by the spectral determinant Z(s)=Det(1-sU) of a quantized map U element of U(N). More precisely, we study the correlator omega_U(s)= (averaging t over the unit circle). Identifying the group U(N) as one member of a dual pair acting in the spinor representation of Spin(4N), omega_U(s) is expanded in terms of irreducible characters of U(N). In close analogy with the ballistic non-linear sigma model, a coherent-state integral representation of omega_U(s) is developed. We show that the leading-order saddle-point approximation reproduces omega_U(s) exactly, up to a constant factor; this miracle can be explained by interpreting omega_U(s) as a character of U(2N), for which the saddle-point expansion yields the Weyl character formula. Unfortunately, this decomposition behaves non-smoothly in the semiclassical limit, and to make further progress some averaging over U needs to be introduced. Several averaging schemes are investigated. In general, a direct application of the saddle-point approximation to these schemes is demonstrated to give incorrect results; this is not the case for a `semiclassical averaging scheme', for which all loop corrections vanish identically. As a side product of the dual pair decomposition, we compute a crossover between the Poisson and CUE ensembles for omega_U(s)
    corecore