31,449 research outputs found

    Worst-Case Robust Distributed Power Allocation in Shared Unlicensed Spectrum

    Full text link
    This paper considers non-cooperative and fully-distributed power-allocation for selfish transmitter-receiver pairs in shared unlicensed spectrum when normalized-interference to each receiver is uncertain. We model each uncertain parameter by the sum of its nominal (estimated) value and a bounded additive error in a convex set, and show that the allocated power always converges to its equilibrium, called robust Nash equilibrium (RNE). In the case of a bounded and symmetric uncertainty region, we show that the power allocation problem for each user is simplified, and can be solved in a distributed manner. We derive the conditions for RNE's uniqueness and for convergence of the distributed algorithm; and show that the total throughput (social utility) is less than that at NE when RNE is unique. We also show that for multiple RNEs, the social utility may be higher at a RNE as compared to that at the corresponding NE, and demonstrate that this is caused by users' orthogonal utilization of bandwidth at RNE. Simulations confirm our analysis

    Robust Linear Precoder Design for Multi-cell Downlink Transmission

    Full text link
    Coordinated information processing by the base stations of multi-cell wireless networks enhances the overall quality of communication in the network. Such coordinations for optimizing any desired network-wide quality of service (QoS) necessitate the base stations to acquire and share some channel state information (CSI). With perfect knowledge of channel states, the base stations can adjust their transmissions for achieving a network-wise QoS optimality. In practice, however, the CSI can be obtained only imperfectly. As a result, due to the uncertainties involved, the network is not guaranteed to benefit from a globally optimal QoS. Nevertheless, if the channel estimation perturbations are confined within bounded regions, the QoS measure will also lie within a bounded region. Therefore, by exploiting the notion of robustness in the worst-case sense some worst-case QoS guarantees for the network can be asserted. We adopt a popular model for noisy channel estimates that assumes that estimation noise terms lie within known hyper-spheres. We aim to design linear transceivers that optimize a worst-case QoS measure in downlink transmissions. In particular, we focus on maximizing the worst-case weighted sum-rate of the network and the minimum worst-case rate of the network. For obtaining such transceiver designs, we offer several centralized (fully cooperative) and distributed (limited cooperation) algorithms which entail different levels of complexity and information exchange among the base stations.Comment: 38 Pages, 7 Figures, To appear in the IEEE Transactions on Signal Processin
    • …
    corecore