902 research outputs found

    Attention Mechanisms in Medical Image Segmentation: A Survey

    Full text link
    Medical image segmentation plays an important role in computer-aided diagnosis. Attention mechanisms that distinguish important parts from irrelevant parts have been widely used in medical image segmentation tasks. This paper systematically reviews the basic principles of attention mechanisms and their applications in medical image segmentation. First, we review the basic concepts of attention mechanism and formulation. Second, we surveyed over 300 articles related to medical image segmentation, and divided them into two groups based on their attention mechanisms, non-Transformer attention and Transformer attention. In each group, we deeply analyze the attention mechanisms from three aspects based on the current literature work, i.e., the principle of the mechanism (what to use), implementation methods (how to use), and application tasks (where to use). We also thoroughly analyzed the advantages and limitations of their applications to different tasks. Finally, we summarize the current state of research and shortcomings in the field, and discuss the potential challenges in the future, including task specificity, robustness, standard evaluation, etc. We hope that this review can showcase the overall research context of traditional and Transformer attention methods, provide a clear reference for subsequent research, and inspire more advanced attention research, not only in medical image segmentation, but also in other image analysis scenarios.Comment: Submitted to Medical Image Analysis, survey paper, 34 pages, over 300 reference

    A Trio-Method for Retinal Vessel Segmentation using Image Processing

    Full text link
    Inner Retinal neurons are a most essential part of the retina and they are supplied with blood via retinal vessels. This paper primarily focuses on the segmentation of retinal vessels using a triple preprocessing approach. DRIVE database was taken into consideration and preprocessed by Gabor Filtering, Gaussian Blur, and Edge Detection by Sobel and Pruning. Segmentation was driven out by 2 proposed U-Net architectures. Both the architectures were compared in terms of all the standard performance metrics. Preprocessing generated varied interesting results which impacted the results shown by the UNet architectures for segmentation. This real-time deployment can help in the efficient pre-processing of images with better segmentation and detection.Comment: Accepted at 26th UK Conference on Medical Image Understanding and Analysis (MIUA-2022) (Abstract short paper

    FAU-net: Fixup initialization channel attention neural network for complex blood vessel segmentation

    Get PDF
    © 2020 by the authors. Medical image segmentation based on deep learning is a central research issue in the field of computer vision. Many existing segmentation networks can achieve accurate segmentation using fewer data sets. However, they have disadvantages such as poor network flexibility and do not adequately consider the interdependence between feature channels. In response to these problems, this paper proposes a new de-normalized channel attention network, which uses an improved de-normalized residual block structure and a new channel attention module in the network for the segmentation of sophisticated vessels. The de-normalized network sends the extracted rough features to the channel attention network. The channel attention module can explicitly model the interdependence between channels and pay attention to the correlation with crucial information inmultiple feature channels. It can focus on the channels with the most association with vital information among multiple feature channels, and get more detailed feature results. Experimental results show that the network proposed in this paper is feasible, is robust, can accurately segment blood vessels, and is particularly suitable for complex blood vessel structures. Finally, we compared and verified the network proposed in this paper with the state-of-the-art network and obtained better experimental results
    • …
    corecore