12 research outputs found

    A Trio-Method for Retinal Vessel Segmentation using Image Processing

    Full text link
    Inner Retinal neurons are a most essential part of the retina and they are supplied with blood via retinal vessels. This paper primarily focuses on the segmentation of retinal vessels using a triple preprocessing approach. DRIVE database was taken into consideration and preprocessed by Gabor Filtering, Gaussian Blur, and Edge Detection by Sobel and Pruning. Segmentation was driven out by 2 proposed U-Net architectures. Both the architectures were compared in terms of all the standard performance metrics. Preprocessing generated varied interesting results which impacted the results shown by the UNet architectures for segmentation. This real-time deployment can help in the efficient pre-processing of images with better segmentation and detection.Comment: Accepted at 26th UK Conference on Medical Image Understanding and Analysis (MIUA-2022) (Abstract short paper

    The Little W-Net That Could: State-of-the-Art Retinal Vessel Segmentation with Minimalistic Models

    Full text link
    The segmentation of the retinal vasculature from eye fundus images represents one of the most fundamental tasks in retinal image analysis. Over recent years, increasingly complex approaches based on sophisticated Convolutional Neural Network architectures have been slowly pushing performance on well-established benchmark datasets. In this paper, we take a step back and analyze the real need of such complexity. Specifically, we demonstrate that a minimalistic version of a standard U-Net with several orders of magnitude less parameters, carefully trained and rigorously evaluated, closely approximates the performance of current best techniques. In addition, we propose a simple extension, dubbed W-Net, which reaches outstanding performance on several popular datasets, still using orders of magnitude less learnable weights than any previously published approach. Furthermore, we provide the most comprehensive cross-dataset performance analysis to date, involving up to 10 different databases. Our analysis demonstrates that the retinal vessel segmentation problem is far from solved when considering test images that differ substantially from the training data, and that this task represents an ideal scenario for the exploration of domain adaptation techniques. In this context, we experiment with a simple self-labeling strategy that allows us to moderately enhance cross-dataset performance, indicating that there is still much room for improvement in this area. Finally, we also test our approach on the Artery/Vein segmentation problem, where we again achieve results well-aligned with the state-of-the-art, at a fraction of the model complexity in recent literature. All the code to reproduce the results in this paper is released

    Development and validation of a deep learning algorithm using recurrent neural network for blood vessel segmentation of 3D medical image

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ํ˜‘๋™๊ณผ์ • ๋ฐ”์ด์˜ค์—”์ง€๋‹ˆ์–ด๋ง์ „๊ณต, 2021. 2. Sungwan Kim์ด๊ฒฝํ˜ธ.์ „์‚ฐํ™”๋‹จ์ธต์ดฌ์˜, ์ž๊ธฐ๊ณต๋ช…์˜์ƒ ๋“ฑ์˜ ์‚ผ์ฐจ์› ์˜๋ฃŒ์˜์ƒ์—์„œ ํ˜ˆ๊ด€ ์˜์—ญ์ถ”์ถœ์€ ๋‹ค์–‘ํ•œ ์‹ฌํ˜ˆ๊ด€๊ณ„ ์งˆํ™˜์˜ ์ง„๋‹จ ๋ฐ ์ˆ˜์ˆ ๊ณ„ํš ์ˆ˜๋ฆฝ์— ์š”๊ตฌ๋˜๋Š” ์„ ํ–‰ ์ ˆ์ฐจ์ด๋‹ค. ํŠนํžˆ ํ˜ˆ๊ด€์€ ํƒ€ ์žฅ๊ธฐ์— ๋น„ํ•ด ์ข๊ณ  ๋ณต์žกํ•˜๋‹ค๋Š” ํŠน์ง•์ด ์žˆ์–ด ์˜์—ญ์ถ”์ถœ์˜ ๋‚œ๋„๊ฐ€ ๋†’๊ณ  ์†Œ๋ชจ๋˜๋Š” ์ธ๋ ฅ ๋ฐ ์‹œ๊ฐ„ ๋˜ํ•œ ์ƒ๋‹นํ•˜๋‹ค. ๊ทธ๋ ‡๊ธฐ ๋•Œ๋ฌธ์— ํ˜ˆ๊ด€ ์˜์—ญ์ถ”์ถœ์„ ์œ„ํ•œ ์ž๋™ํ™” ๊ธฐ์ˆ  ์—ฐ๊ตฌ๋“ค์ด ํ™œ๋ฐœํžˆ ์ด๋ฃจ์–ด์ง€๊ณ  ์žˆ๋‹ค. ์ตœ๊ทผ์—๋Š” ๊ทธ๋ž˜ํ”ฝ ์ฒ˜๋ฆฌ ์žฅ์น˜์™€ ์†Œํ”„ํŠธ์›จ์–ด ๊ธฐ์ˆ ์ด ๋ฐœ์ „ํ•จ์— ๋”ฐ๋ผ ์ธ๊ณต์ง€๋Šฅ์œผ๋กœ ์˜๋ฃŒ์˜์ƒ์„ ๋ถ„์„ํ•ด ํŒ๋… ๋ฐ ์ง„๋‹จ์„ ๋•๋Š” ์—ฐ๊ตฌ๋ถ„์•ผ๊ฐ€ ํฌ๊ฒŒ ํ™œ์„ฑํ™” ๋˜๊ณ  ์žˆ๋‹ค. ๊ทธ ์ค‘, ํ•ฉ์„ฑ๊ณฑ์‹ ๊ฒฝ๋ง์„ ์‚ฌ์šฉํ•œ ์‹ฌ์ธตํ•™์Šต ์ ‘๊ทผ๋ฒ•์€ ์˜์ƒ์˜ ๊ณต๊ฐ„์  ํŠน์ง•์„ ์ž๋™ ์ถ”์ถœํ•จ์œผ๋กœ์จ ๋›ฐ์–ด๋‚œ ์„ฑ๋Šฅ์„ ๊ธฐ๋กํ–ˆ๊ณ , ๋„์•ฝ์—ฐ๊ฒฐ๋ถ€๋ฅผ ์ง€๋‹Œ ํŠน์ˆ˜ํ•œ ํ˜•ํƒœ์˜ ํ•ฉ์„ฑ๊ณฑ์‹ ๊ฒฝ๋ง์ธ U-Net์€ ์ธ๊ณต์ง€๋Šฅ ์˜์—ญ์ถ”์ถœ ๋ชจ๋ธ์˜ ํ‘œ๋ณธ์œผ๋กœ ์ธ์‹๋˜๊ณ  ์žˆ๋‹ค. ์‚ผ์ฐจ์› ํ˜ˆ๊ด€ ์˜์—ญ์ถ”์ถœ์„ ์œ„ํ•œ ์‹ฌ์ธตํ•™์Šต ๋ชจ๋ธ ๋˜ํ•œ U-Net ๊ธฐ๋ฐ˜์œผ๋กœ ๊ตฌ์„ฑ๋˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ์ผ๋ฐ˜์ ์ด๋‹ค. ํŠนํžˆ ํƒ€ ์žฅ๊ธฐ ์˜์—ญ์ถ”์ถœ์—๋„ ๋ฒ”์šฉ์ ์œผ๋กœ ์‚ฌ์šฉ๋˜๋Š” ์ด์ฐจ์› U-Net์ด๋‚˜ ์‚ผ์ฐจ์› U-Net์„ ์ฑ„ํƒํ•˜๋Š” ์‚ฌ๋ก€๊ฐ€ ๋งŽ๋‹ค. ํ•˜์ง€๋งŒ ํ˜ˆ๊ด€์€ ์ผ๋ฐ˜์ ์ธ ์žฅ๊ธฐ์™€ ๋‹ค๋ฅด๊ฒŒ ์‹ ์ฒด ๋‚ด์—์„œ ๋งค์šฐ ์–‡๊ณ  ๋ณต์žกํ•˜๊ฒŒ ์–ฝํ˜€ ์žˆ๋‹ค๋Š” ๊ตฌ์กฐ์  ํŠน์ง•์ด ์žˆ์–ด ๋ฒ”์šฉ ๋ชจ๋ธ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ์ ‘๊ทผํ•  ๊ฒฝ์šฐ ํƒ€ ์žฅ๊ธฐ ์˜์—ญ์ถ”์ถœ์— ๋น„ํ•ด ์ƒ๋Œ€์ ์ธ ์–ด๋ ค์›€์ด ๋ฐœ์ƒํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์‚ผ์ฐจ์› ํ˜ˆ๊ด€ ์˜์—ญ์ถ”์ถœ์˜ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•ด U-Net ๊ธฐ๋ฐ˜์˜ ์ƒˆ๋กœ์šด ๋งž์ถคํ˜• ๋ชจ๋ธ์ธ ๊ฑฐ๋ฏธํ˜• U-Net์„ ์ œ์•ˆํ•œ๋‹ค. ์ด ๋ชจ๋ธ์˜ ํ•ต์‹ฌ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ๊ธฐ์กด ์ด์ฐจ์› U-Net ์ ‘๊ทผ๋ฒ•์— ์ˆœํ™˜์‹ ๊ฒฝ๋ง์„ ์‚ฝ์ž…ํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ์ˆœํ™˜์‹ ๊ฒฝ๋ง์€ ๋ณธ๋ž˜ ์Œ์„ฑ, ์ž์—ฐ์–ด ๋“ฑ ์ˆœ์„œ๊ฐ€ ์žˆ๋Š” ์ž๋ฃŒ์˜ ๋ฌธ๋งฅ์  ์—ฐ๊ฒฐ์„ฑ์„ ํ•™์Šตํ•˜๋Š” ์ผ์— ํŠนํ™”๋œ ์‹ฌ์ธต์‹ ๊ฒฝ๋ง์˜ ํŠน์ˆ˜ํ•œ ํ˜•ํƒœ์ด๋‹ค. ๋”ฐ๋ผ์„œ ์‚ผ์ฐจ์› ์˜๋ฃŒ์˜์ƒ์„ ์ด๋ฏธ์ง€ ์‹œํ€€์Šค (image sequence)๋กœ ๊ฐ„์ฃผํ•œ๋‹ค๋ฉด ์ˆœํ™˜์‹ ๊ฒฝ๋ง์„ ์ ์šฉํ•ด ์ธ์ ‘ํ•œ ์ด๋ฏธ์ง€์™€์˜ ๋ฌธ๋งฅ์  ์—ฐ๊ฒฐ์„ฑ์„ ๋ชจ๋ธ์— ํšจ๊ณผ์ ์œผ๋กœ ๋ฐ˜์˜์‹œํ‚ฌ ์ˆ˜ ์žˆ๋‹ค. ํŠนํžˆ ํ˜ˆ๊ด€์€ ๊ธฐ๋ณธ์ ์œผ๋กœ ์„œ๋กœ ์—ฐ๊ฒฐ๋˜์–ด ์žˆ์œผ๋ฏ€๋กœ ์ด๋ฏธ์ง€ ๊ฐ„ ๋šœ๋ ทํ•œ ๋ฌธ๋งฅ์ด ์กด์žฌํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์ˆœํ™˜์‹ ๊ฒฝ๋ง์„ ์‚ฌ์šฉํ•  ๊ฒฝ์šฐ ํ•™์Šต์˜ ํšจ๊ณผ๊ฐ€ ์ข‹์•„์งˆ ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ์ œ์‹œํ•œ ์ ‘๊ทผ๋ฒ•์˜ ํšจ๊ณผ ๊ฒ€์ฆ์„ ์œ„ํ•ด ๋‡Œํ˜ˆ๊ด€, ๊ฐ„ํ˜ˆ๊ด€ ๋ฐ ์ขŒ์‹ฌ์‹ค ์˜์—ญ์ถ”์ถœ์„ ์œ„ํ•œ ์„ธ ์ข…๋ฅ˜์˜ ์‚ผ์ฐจ์› ํ˜ˆ๊ด€ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค๋ฅผ ํ™•๋ณดํ•ด ํ•™์Šต ๋ฐ ํ‰๊ฐ€๋ฅผ ์ง„ํ–‰ํ•œ๋‹ค. ๋˜ํ•œ ์„ฑ๋Šฅ์˜ ๋น„๊ต๋ฅผ ์œ„ํ•ด ๊ธฐ์กด์˜ ๋Œ€ํ‘œ ๋ชจ๋ธ์ธ ์ด์ฐจ์› U-Net๊ณผ ์‚ผ์ฐจ์› U-Net์„ ๋น„๋กฏํ•˜์—ฌ ์ˆœํ™˜์‹ ๊ฒฝ๋ง์„ ๋‹ค๋ฅธ ๋ฐฉ์‹์œผ๋กœ ํ™œ์šฉํ•œ FCN-RNN์— ๋Œ€ํ•ด ๊ฐ™์€ ์กฐ๊ฑด ํ•˜์—์„œ ์ถ”๊ฐ€ ํ•™์Šต์‹œ์ผœ ๋น„๊ต๊ตฐ์œผ๋กœ ์„ค์ •ํ•œ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ์˜์—ญ์ถ”์ถœ์˜ ์„ฑ๋Šฅ ํ‰๊ฐ€์— ์ผ๋ฐ˜์ ์œผ๋กœ ์‚ฌ์šฉ๋˜๋Š” ๋‹ค์ด์Šค ๊ณ„์ˆ˜ (DSC) ๋ฐ ์ž์นด๋“œ ๊ณ„์ˆ˜ (IoU)์˜ ํ‰๊ท ์น˜๋ฅผ ๋ณด๊ณ ํ•œ๋‹ค. ๋Œ€ํ‘œ์ ์œผ๋กœ ๋‡Œํ˜ˆ๊ด€ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค์— ๋Œ€ํ•ด ์ด์ฐจ์› U-Net์€ 0.745, ์‚ผ์ฐจ์› U-Net์€ 0.716, FCN-RNN์€ 0.752, ๊ทธ๋ฆฌ๊ณ  ๊ฑฐ๋ฏธํ˜• U-Net์€ 0.807์˜ ํ‰๊ท  DSC๋ฅผ ๊ธฐ๋กํ•˜๋ฉฐ ๊ธฐ์กด ๋ชจ๋“  ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ์„ ๋Šฅ๊ฐ€ํ•จ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค.3D blood vessel segmentation (3D BVS) is an important prerequisite for various cardiovascular disease diagnosis. 3D BVS is difficult because the blood vessel has complicated structure and is narrower than other organs. We propose a novel deep learning framework to improve performance by emphasizing inter-slice context that the blood vessels are connected through adjacent slices. We implemented a framework from U-Net with two structural modifications. First, the baseline is duplicated several times in parallel to extract features of adjacent slices simultaneously. Second, to weave unconnected contexts between extracted features, a LSTM layer is incorporated between encoder and decoder. Consequently, the spatial information from x-y plain and the inter-slice context from z-axis make the segmentation masks smooth and accurate. Experiment with three 3D BVS datasets shows Spider U-Net outperforms whole representative models in average dice score.๊ตญ๋ฌธ์ดˆ๋ก i ๋ชฉ์ฐจ iv ๊ทธ๋ฆผ ๋ชฉ์ฐจ vi ํ‘œ ๋ชฉ์ฐจ viii 1. ์„œ๋ก  9 1.1. ๋ฐฐ๊ฒฝ 9 1.2. ์—ฐ๊ตฌ์˜ ๋ชฉ์  12 2. ๋ณธ๋ก  14 2.1. ์•Œ๊ณ ๋ฆฌ์ฆ˜ 14 2.1.1. U-Net ๊ธฐ์ €๋ชจ๋ธ 15 2.1.2. ๋‚ ์‹ค๋ถ€ 18 2.1.3. ์”จ์‹ค๋ถ€ 19 2.2. ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค 21 2.2.1. ๋‡Œ ์ž๊ธฐ๊ณต๋ช…ํ˜ˆ๊ด€์กฐ์˜์˜์ƒ 21 2.2.2. ๋ณต๋ถ€ ์ „์‚ฐํ™”๋‹จ์ธต์ดฌ์˜์˜์ƒ 25 2.2.3. ์‹ฌ์žฅ ์ž๊ธฐ๊ณต๋ช…์˜์ƒ 26 2.3. ๋น„๊ต ๋ชจ๋ธ 27 2.4. ๊ตฌํ˜„ ๋ฐ ์‹คํ—˜ 28 3. ๊ฒฐ๊ณผ ๋ฐ ๋ถ„์„ 29 3.1. ์„ฑ๋Šฅํ‰๊ฐ€์ง€ํ‘œ 29 3.2. ์ •๋Ÿ‰์  ์„ฑ๋Šฅํ‰๊ฐ€ 29 3.3. ์ •์„ฑ์  ์„ฑ๋Šฅํ‰๊ฐ€ 30 3.3.1. ๋‡Œ ์ž๊ธฐ๊ณต๋ช…ํ˜ˆ๊ด€์กฐ์˜์˜์ƒ 31 3.3.2. ๋ณต๋ถ€ ์ „์‚ฐํ™”๋‹จ์ธต์ดฌ์˜์˜์ƒ 33 3.3.3. ์‹ฌ์žฅ ์ž๊ธฐ๊ณต๋ช…์˜์ƒ 34 4. ๊ณ ์ฐฐ 36 4.1. ์‹คํ—˜ ๊ฒฐ๊ณผ ๊ณ ์ฐฐ 36 4.2. ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๊ณ ์ฐฐ 37 5. ๊ฒฐ๋ก  38 ์ฐธ๊ณ  ๋ฌธํ—Œ 39 Abstract 41Maste

    Deep learning based retinal vessel segmentation and hypertensive retinopathy quantification using heterogeneous features cross-attention neural network

    Get PDF
    Retinal vessels play a pivotal role as biomarkers in the detection of retinal diseases, including hypertensive retinopathy. The manual identification of these retinal vessels is both resource-intensive and time-consuming. The fidelity of vessel segmentation in automated methods directly depends on the fundus images' quality. In instances of sub-optimal image quality, applying deep learning-based methodologies emerges as a more effective approach for precise segmentation. We propose a heterogeneous neural network combining the benefit of local semantic information extraction of convolutional neural network and long-range spatial features mining of transformer network structures. Such cross-attention network structure boosts the model's ability to tackle vessel structures in the retinal images. Experiments on four publicly available datasets demonstrate our model's superior performance on vessel segmentation and the big potential of hypertensive retinopathy quantification
    corecore