47,676 research outputs found

    Distributed Algorithms for Scheduling on Line and Tree Networks

    Full text link
    We have a set of processors (or agents) and a set of graph networks defined over some vertex set. Each processor can access a subset of the graph networks. Each processor has a demand specified as a pair of vertices , along with a profit; the processor wishes to send data between uu and vv. Towards that goal, the processor needs to select a graph network accessible to it and a path connecting uu and vv within the selected network. The processor requires exclusive access to the chosen path, in order to route the data. Thus, the processors are competing for routes/channels. A feasible solution selects a subset of demands and schedules each selected demand on a graph network accessible to the processor owning the demand; the solution also specifies the paths to use for this purpose. The requirement is that for any two demands scheduled on the same graph network, their chosen paths must be edge disjoint. The goal is to output a solution having the maximum aggregate profit. Prior work has addressed the above problem in a distibuted setting for the special case where all the graph networks are simply paths (i.e, line-networks). Distributed constant factor approximation algorithms are known for this case. The main contributions of this paper are twofold. First we design a distributed constant factor approximation algorithm for the more general case of tree-networks. The core component of our algorithm is a tree-decomposition technique, which may be of independent interest. Secondly, for the case of line-networks, we improve the known approximation guarantees by a factor of 5. Our algorithms can also handle the capacitated scenario, wherein the demands and edges have bandwidth requirements and capacities, respectively.Comment: Accepted to PODC 2012, full versio

    Convex and Network Flow Optimization for Structured Sparsity

    Get PDF
    We consider a class of learning problems regularized by a structured sparsity-inducing norm defined as the sum of l_2- or l_infinity-norms over groups of variables. Whereas much effort has been put in developing fast optimization techniques when the groups are disjoint or embedded in a hierarchy, we address here the case of general overlapping groups. To this end, we present two different strategies: On the one hand, we show that the proximal operator associated with a sum of l_infinity-norms can be computed exactly in polynomial time by solving a quadratic min-cost flow problem, allowing the use of accelerated proximal gradient methods. On the other hand, we use proximal splitting techniques, and address an equivalent formulation with non-overlapping groups, but in higher dimension and with additional constraints. We propose efficient and scalable algorithms exploiting these two strategies, which are significantly faster than alternative approaches. We illustrate these methods with several problems such as CUR matrix factorization, multi-task learning of tree-structured dictionaries, background subtraction in video sequences, image denoising with wavelets, and topographic dictionary learning of natural image patches.Comment: to appear in the Journal of Machine Learning Research (JMLR
    • …
    corecore