5 research outputs found

    A review of information flow diagrammatic models for product-service systems

    Get PDF
    A product-service system (PSS) is a combination of products and services to create value for both customers and manufacturers. Modelling a PSS based on function orientation offers a useful way to distinguish system inputs and outputs with regards to how data are consumed and information is used, i.e. information flow. This article presents a review of diagrammatic information flow tools, which are designed to describe a system through its functions. The origin, concept and applications of these tools are investigated, followed by an analysis of information flow modelling with regards to key PSS properties. A case study of selection laser melting technology implemented as PSS will then be used to show the application of information flow modelling for PSS design. A discussion based on the usefulness of the tools in modelling the key elements of PSS and possible future research directions are also presented

    Development of a design performance measurement matrix for improving collaborative design during a design process

    Get PDF
    This is a research paper. Research presented in this paper aimed to investigate how to measure collaborative design performance and, in turn, improve the final design output during a design process, with a clear objective to develop a Design Performance Measurement (DPM) matrix to measure design project team member's design collaboration performance

    Modelling information flow for organisations delivering microsystems technology

    Get PDF
    Motivated by recent growth and applications of microsystems technology (MST), companies within the MST domain are beginning to explore avenues for understanding, maintaining and improving information flow, within their organisations and to/from customers, with a view to enhancing delivery performance. Delivery for organisations is the flow of goods from sellers to buyers and a classic approach to understanding information flow is via the use of modelling techniques. Cont/d

    Methodology for managing shipbuilding projectby integrated optimality

    Get PDF
    PhD ThesisSmall to medium shipyards in developing shipbuilding countries face a persistent challenge to contain project cost and deadline due mainly to the ongoing development in facility and assorted product types. A methodology has been proposed to optimize project activities at the global level of project planning based on strength of dependencies between activities and subsequent production units at the local level. To achieve an optimal performance for enhanced competitiveness, both the global and local level of shipbuilding processes must be addressed. This integrated optimization model first uses Dependency Structure Matrix (DSM) to derive an optimal sequence of project activities based on Triangularization algorithm. Once optimality of project activities in the global level is realized then further optimization is applied to the local levels, which are the corresponding production processes of already optimized project activities. A robust optimization tool, Response Surface Method (RSM), is applied to ascertain optimum setting of various factors and resources at the production activities. Data from a South Asian shipyard has been applied to validate the fitness of the proposed method. Project data and computer simulated data are combined to carry out experiments according to the suggested layout of Design of Experiments (DOE). With the application of this model, it is possible to study the bottleneck dynamics of the production process. An optimum output of the yard, thus, may be achieved by the integrated optimization of project activities and corresponding production processes with respect to resource allocation. Therefore, this research may have a useful significance towards the improvement in shipbuilding project management

    The strategic value of targeted knowledge management - case study of an Australian refrigeration company

    Get PDF
     This thesis is a study of design and implementation of an engineering knowledge management system to facilitate knowledge capture, sharing and reuse to both ensure business continuity and resolve a make-span problem in an Australian refrigeration company. The company had encountered problems with a number of engineering staff in the small product development team leaving the company and taking their expertise with them. This situation has impacted the business continuity of the company, because the knowledge and expertise used in the refrigerated display cabinet development process is a combination of explicit and tacit knowledge as the engineers conduct the product development process intuitively. Records of previous design and testing processes were either non-existent or stored in ways that were not accessible. The other business problem in the company resulted from product development taking too long, in effect from 6 weeks up to the worst case of one year. The company needed research solutions to both of these problems to strategically maintain the competitiveness of the company business. This research applied a single case study research method with a problem-solving paradigm, Design Science methodology, to develop and then test solutions. Design Science as a research methodology has two components, first design development and second, design evaluation. The researcher developed an engineering knowledge based system as an artefact to solve the problem of enabling company business continuity. Using ontology as a structural base, the KBS contains both knowledge elements captured from the engineers during the data collection process and existing knowledge artefacts in the company. The research used a set of multilayered research techniques, including semi-formal and formal interviews, serendipitous interviews, group meetings, observation and shadowing, to capture and then structure both the tacit and explicit knowledge. The resultant ontology was used to build the KBS to store both tacit and explicit knowledge and answer the engineers’ questions about their existing and previous product development processes. The KBS developed in this research is a knowledge repository to maintain records of the products design and testing processes in a searchable form. Use and then an evaluation of the system by the engineers and the executive staff of the company confirmed that the intention of the system to address the business continuity problem by knowledge capture, classification and storage was achieved and met the company’s business needs. This research also applied Heuristic Process Mining to the knowledge stored in the KBS to address the second problem identified initially by the company, that of lengthy make span in new product design and development. HPM is a technique using mathematical models to find relationships between tasks in the process. HMP measures dependency and frequency values between tasks and tasks with low D/F value can be eliminated from the process. This then can lead to the shorter product testing process. The research showed that the application of HPM to the stored process knowledge in the KMS was able to significantly reduce the product design and testing process in the company
    corecore