5,776 research outputs found
Switching patients from other inhaled corticosteroid devices to the Easyhaler(®) : historical, matched-cohort study of real-life asthma patients
Peer reviewedPublisher PD
Inhalation characteristics of asthma patients, COPD patients and healthy volunteers with the Spiromax® and Turbuhaler® devices: a randomised, cross-over study.
BACKGROUND: Spiromax® is a novel dry-powder inhaler containing formulations of budesonide plus formoterol (BF). The device is intended to provide dose equivalence with enhanced user-friendliness compared to BF Turbuhaler® in asthma and chronic obstructive pulmonary disease (COPD). The present study was performed to compare inhalation parameters with empty versions of the two devices, and to investigate the effects of enhanced training designed to encourage faster inhalation. METHODS: This randomised, open-label, cross-over study included children with asthma (n = 23), adolescents with asthma (n = 27), adults with asthma (n = 50), adults with COPD (n = 50) and healthy adult volunteers (n = 50). Inhalation manoeuvres were recorded with each device after training with the patient information leaflet (PIL) and after enhanced training using an In-Check Dial device. RESULTS: After PIL training, peak inspiratory flow (PIF), maximum change in pressure (∆P) and the inhalation volume (IV) were significantly higher with Spiromax than with the Turbuhaler device (p values were at least <0.05 in all patient groups). After enhanced training, numerically or significantly higher values for PIF, ∆P, IV and acceleration remained with Spiromax versus Turbuhaler, except for ∆P in COPD patients. After PIL training, one adult asthma patient and one COPD patient inhaled <30 L/min through the Spiromax compared to one adult asthma patient and five COPD patients with the Turbuhaler. All patients achieved PIF values of at least 30 L/min after enhanced training. CONCLUSIONS: The two inhalers have similar resistance so inhalation flows and pressure changes would be expected to be similar. The higher flow-related values noted for Spiromax versus Turbuhaler after PIL training suggest that Spiromax might have human factor advantages in real-world use. After enhanced training, the flow-related differences between devices persisted; increased flow rates were achieved with both devices, and all patients achieved the minimal flow required for adequate drug delivery. Enhanced training could be useful, especially in COPD patients
Nanoparticles in the treatment of chronic lung diseases
Nanoparticles, although considered a topic of modern medicine, actually have an interesting history. Currently, advances in nanomedicine hold great promise as drug carrier systems for sustained release and targeted delivery of diverse therapeutic agents. Nanoparticles can be defined as complex drug carrier systems which incorporate and protect a certain drug or particle. Nanoparticles can be administered via different routes, such as intravenous injection, oral administration, or pulmonary inhalation. Even though the use of nano-carriers via pulmonary inhalation is heavily debated, this system represents an attractive alternative to the intravenous or oral routes, due to the unique anatomical and physiological features of the lungs and the minimal interactions between the targeted site and other organs. Some of the widely used nano-carriers for the treatment of chronic pulmonary diseases, via pulmonary route, are as follows: polymeric nanoparticles, liposomal nano-carriers, solid lipid nanoparticles, and submicron emulsions. Nano-carrier systems provide the advantage of sustained-drug release in the lung tissue resulting in reduced dosing frequency and improved patient compliance. Further studies focusing on understanding the mechanisms of action of nanoparticles and improving their chemical structure are required in order to better understand the potential long-term risk of excipient toxicity and nanoscale carriers
Exploring the role of quantitative feedback in inhaler technique education : a cluster-randomised, two-arm, parallel-group, repeated-measures study
Peer reviewedPublisher PD
Comparison of serious inhaler technique errors made by device-naïve patients using three different dry powder inhalers: a randomised, crossover, open-label study
Background: Serious inhaler technique errors can impair drug delivery to the lungs. This randomised, crossover, open-label study evaluated the proportion of patients making predefined serious errors with Pulmojet compared with Diskus and Turbohaler dry powder inhalers. Methods: Patients ≥18 years old with asthma and/or COPD who were current users of an inhaler but naïve to the study devices were assigned to inhaler technique assessment on Pulmojet and either Diskus or Turbohaler in a randomised order. Patients inhaled through empty devices after reading the patient information leaflet. If serious errors potentially affecting dose delivery were recorded, they repeated the inhalations after watching a training video. Inhaler technique was assessed by a trained nurse observer and an electronic inhalation profile recorder. Results: Baseline patient characteristics were similar between randomisation arms for the Pulmojet-Diskus (n = 277) and Pulmojet-Turbohaler (n = 144) comparisons. Non-inferiority in the proportions of patients recording no nurse-observed serious errors was demonstrated for both Pulmojet versus Diskus, and Pulmojet versus Turbohaler; therefore, superiority was tested. Patients were significantly less likely to make ≥1 nurse-observed serious errors using Pulmojet compared with Diskus (odds ratio, 0.31; 95 % CI, 0.19–0.51) or Pulmojet compared with Turbohaler (0.23; 0.12–0.44) after reading the patient information leaflet with additional video instruction, if required. Conclusions These results suggest Pulmojet is easier to learn to use correctly than the Turbohaler or Diskus for current inhaler users switching to a new dry powder inhaler
Potential of a cyclone prototype spacer to improve in vitro dry powder delivery
Copyright The Author(s) 2013. This article is published with open access at Springerlink.com. This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are creditedPurpose: Low inspiratory force in patients with lung disease is associated with poor deagglomeration and high throat deposition when using dry powder inhalers (DPIs). The potential of two reverse flow cyclone prototypes as spacers for commercial carrierbased DPIs was investigated. Methods: Cyclohaler®, Accuhaler® and Easyhaler® were tested with and without the spacers between 30-60 Lmin-1. Deposition of particles in the next generation impactor and within the devices was determined by high performance liquid chromatography. Results: Reduced induction port deposition of the emitted particles from the cyclones was observed due to the high retention of the drug within the spacers (e.g. salbutamol sulphate (SS): 67.89 ± 6.51 % at 30 Lmin-1 in Cheng 1). Fine particle fractions of aerosol as emitted from the cyclones were substantially higher than the DPIs alone. Moreover, the aerodynamic diameters of particles emitted from the cyclones were halved compared to the DPIs alone (e.g. SS from the Cyclohaler® at 4 kPa: 1.08 ± 0.05 μm vs. 3.00 ± 0.12 μm, with and without Cheng 2, respectively) and unaltered with increased flow rates. Conclusion: This work has shown the potential of employing a cyclone spacer for commercial carrier-based DPIs to improve inhaled drug delivery.Peer reviewe
Combination fluticasone and salmeterol versus fixed dose combination budesonide and formoterol for chronic asthma in adults and children
BackgroundCombination therapies are frequently recommended as maintenance therapy for people with asthma, whose disease is not adequately controlled with inhaled steroids. Fluticasone/salmeterol (FP/SAL) and budesonide/formoterol (BUD/F) have been assessed against their respective monocomponents, but there is a need to compare these two therapies on a head-to-head basis.ObjectivesTo estimate the relative effects of fluticasone/salmeterol and budesonide/formoterol in terms of asthma control, safety and lung function.Search strategyWe searched the Cochrane Airways Group register of trials with prespecified terms. We performed additional hand searching of manufacturers' web sites and online trial registries. Searches are current to May 2008.Selection criteriaRandomised studies comparing fixed dose FP/SAL and BUD/ F were eligible, for a minimum of 12 weeks. Crossover studies were excluded. Our primary outcomes were: i) exacerbations requiring oral steroid bursts, ii) hospital admission and iii) serious adverse events.Data collection and analysisTwo authors independently assessed studies for inclusion in the review. We combined continuous data outcomes with a mean difference (MD), and dichotomous data outcomes with an odds ratio (OR).Main resultsFive studies met the review entry criteria (5537 participants). Primary outcomes: The odds of an exacerbation requiring oral steroids did not differ significantly between treatments (OR 0.89; 95% CI 0.73 to 1.09, three studies, 4515 participants). The odds of an exacerbation leading hospital admission were also not significantly different (OR 1.29; 95% CI 0.68 to 2.47, four studies, 4879 participants). The odds of serious adverse events did not differ significantly between treatments (OR 1.47; 95% CI 0.75, 2.86, three studies, 4054 participants). Secondary outcomes: Lung function outcomes, symptoms, rescue medication, exacerbations leading ED visit/hospital admission and adverse events were not significantly different between treatments.Authors' conclusionsThe evidence in this review indicates that differences in the requirement for oral steroids and hospital admission between BUD/F and FP/SAL do not reach statistical significance. However, the confidence intervals do not exclude clinically important differences between treatments in reducing exacerbations or causing adverse events. The width of the confidence intervals for the primary outcomes justify further trials in order to better determine the relative effects of these drug combinations. Although this review sought to assess the effects of these drugs in both adults and children, no trials were identified in the under-12s and research in this area is of a high priority
Inhalation therapy in the next decade : Determinants of adherence to treatment in asthma and COPD
Peer reviewedPublisher PD
The Inhalation Characteristics of Patients When They Use Different Dry Powder Inhalers
Background: The characteristics of each inhalation maneuver when patients use dry powder inhalers (DPIs) are important, because they control the quality of the emitted dose.
Methods: We have measured the inhalation profiles of asthmatic children [CHILD; n=16, mean forced expiratory volume in 1 sec (FEV1) 79% predicted], asthmatic adults (ADULT; n=53, mean predicted FEV1 72%), and chronic obstructive pulmonary disease (COPD; n=29, mean predicted FEV1 42%) patients when they inhaled through an Aerolizer, Diskus, Turbuhaler, and Easyhaler using their “real-life” DPI inhalation technique. These are low-, medium-, medium/high-, and high-resistance DPIs, respectively. The inhalation flow against time was recorded to provide the peak inhalation flow (PIF; in L/min), the maximum pressure change (ΔP; in kPa), acceleration rates (ACCEL; in kPa/sec), time to maximum inhalation, the length of each inhalation (in sec), and the inhalation volume (IV; in liters) of each inhalation maneuver.
Results: PIF, ΔP, and ACCEL values were consistent with the order of the inhaler's resistance. For each device, the inhalation characteristics were in the order ADULT>COPD>CHILD for PIF, ΔP, and ACCEL (p4 L and ΔP >4 kPa.
Conclusion: The large variability of these inhalation characteristics and their range highlights that if inhalation profiles were used with compendial in vitro dose emission measurements, then the results would provide useful information about the dose patients inhale during routine use. The inhalation characteristics highlight that adults with asthma have greater inspiratory capacity than patients with COPD, whereas children with asthma have the lowest. The significance of the inhaled volume to empty doses from each device requires investigation
Patient considerations in the treatment of COPD: focus on the new combination inhaler umeclidinium/vilanterol.
Medication adherence among patients with chronic diseases, such as COPD, may be suboptimal, and many factors contribute to this poor adherence. One major factor is the frequency of medication dosing. Once-daily dosing has been shown to be an important variable in medication adherence in chronic diseases, such as COPD. New inhalers that only require once-daily dosing are becoming more widely available. Combination once-daily inhalers that combine any two of the following three agents are now available: 1) a long-acting muscarinic antagonist; 2) a long acting beta2 agonist; and 3) an inhaled corticosteroid. A new once-daily inhaler with both a long-acting muscarinic antagonist, umeclidinium bromide, and a long acting beta2 agonist, vilanterol trifenatate, is now available worldwide for COPD treatment. It provides COPD patients convenience, efficacy, and a very favorable adverse-effects profile. Additional once-daily combination inhalers are available or will soon be available for COPD patients worldwide. The use of once-daily combination inhalers will likely become the standard maintenance management approach in the treatment of COPD because they improve medication adherence
- …
