992,358 research outputs found

    Effects of torrefaction on energy properties of Eucalyptus grandis wood

    Full text link
    Torrefaction is a thermal treatment that promotes homogenization and improvement of energy properties of biomass. This study aims to evaluate the effects of torrefaction on the main energy properties of Eucalyptus grandis wood. Wood was torrefied at three distinct temperatures (220°C, 250°C and 280°C) and analyzed for gravimetric yield (ratio of dry wood mass to torrefied wood mass), bulk density (ratio of dry torrefied mass to dry torrefied volume), heating value (higher-HHV, lower - LI-IV and useful - UHV), energy density (ratio of heating value to bulk density) and energy yield (product of gravimetric yield and ratio of HHV of torrefied wood to HHV of feedstock). The obtained results revealed significant differences for all properties being analyzed except for bulk density, which showed no statistical difference between the control and the treatment at 220°C. Temperature 250°C generated the best energy density as a function of the increase in heating value and the slight decrease in bulk density. (Résumé d'auteur

    Electrons in Dry DNA from Density Functional Calculations

    Full text link
    The electronic structure of an infinite poly-guanine - poly-cytosine DNA molecule in its dry A-helix structure is studied by means of density-functional calculations. An extensive study of 30 nucleic base pairs is performed to validate the method. The electronic energy bands of DNA close to the Fermi level are then analyzed in order to clarify the electron transport properties in this particularly simple DNA realization, probably the best suited candidate for conduction. The energy scale found for the relevant band widths, as compared with the energy fluctuations of vibrational or genetic-sequence origin, makes highly implausible the coherent transport of electrons in this system. The possibility of diffusive transport with sub-nanometer mean free paths is, however, still open. Information for model Hamiltonians for conduction is provided.Comment: 8 pages, 4 figure

    Structure of clay topsoil affected by tillage intensity

    Get PDF
    On the clay loam soil in 0-0,05 m layer, the average dry bulk density of ploughed soil was greater than that of reduced tilled soils. This was probably due to the higher organic matter content of reduced tilled plots. On the clay soil, the differences in soil dry bulk density were, however, small. In the 0-0,05 m layer, the differences in macropore size distribution were small on both fields

    A simulation study on the interactive effects of radiation and plant density on growth of cut chrysanthemum

    Get PDF
    In the present study, we used a photosynthesis-driven crop growth model to determine acceptable plant densities for cut chrysanthemum throughout the year at different intensities of supplementary light. Dry matter partitioning between leaves, stems, and flowers was simulated as a function of crop developmental stage. Leaf area index was simulated as leaf dry mass multiplied by specific leaf area, the latter being a function of season. Climatic data (hourly global radiation, greenhouse temperature, and CO2 concentration) and initial organ dry mass were model inputs. Assimilation lights were switched on and off based on time and ambient global radiation intensity. Simulated plant fresh mass with supplementary light (49 µmol m-2 s-1) for 52 cultivations (weekly plantings, reference plant densities, and length of the long and short day period) was used as reference plant fresh mass. For four other supplementary light intensities (31, 67, 85, and 104 µmol m-2 s-1), dry matter production was simulated with the reference plant density and length of the long and short day period for each planting week and plant fresh mass was calculated. The acceptable plant density was then calculated as the ratio between plant fresh mass and reference plant fresh mass multiplied by the reference density. Under low natural light intensities, plant density could be increased substantially (>30%) at increased supplementary light intensities, while maintaining the desired plant mass. Simulated light use efficiency (g additional dry mass ¿ MJ-1 additional supplementary light) was higher in winter (4.7) than in summer (3.5), whereas it hardly differed between the supplementary light intensities. This type of simulations can be used to support decisions on the acceptable level of plant density at different intensities of supplementary lighting or lighting strategies and on optimum supplementary light intensities

    Dry transfer of CVD graphene using MoS2_2-based stamps

    Full text link
    Recently, a contamination-free dry transfer method for graphene grown by chemical vapor deposition (CVD) has been reported that allows to directly pick-up graphene from the copper growth substrate using a flake of hexagonal boron nitride (hBN), resulting in ultrahigh charge carrier mobility and low overall doping. Here, we report that not only hBN, but also flakes of molybdenum disulfide (MoS2_2) can be used to dry transfer graphene. This, on one hand, allows for the fabrication of complex van-der-Waals heterostructures using CVD graphene combined with different two-dimensional materials and, on the other hand, can be a route towards a scalable dry transfer of CVD graphene. The resulting heterostructures are studied using low temperature transport measurements revealing a strong charge carrier density dependence of the carrier mobilities (up to values of 12,000 cm2^2/(Vs)) and the residual charge carrier density fluctuations near the charge neutrality point when changing the carrier density in the MoS2_2 by applying a top gate voltage.Comment: 5 pages, 3 figure

    Resource Mediated Competition of two South Texas Natives: _Acacia berlandieri_ and _Trichloris pluriflora_

    Get PDF
    *Background/Question/Methods* 
_Acacia berlandieri_, an early-successional C~3~ woody shrub legume, and _Trichloris pluriflora_, a late-successional/climax C~4~ mid-tall grass, reside in similar habitats and have both been documented in Texas for over 150 years. This study examines the resource mediated above and below ground competition within and between these species, which may illuminate some of the dynamics involved in the encroachment of woody shrub species into the former grasslands. These species, started from seed, were grown outdoors (5 replicates/treatment) using sandy clay loam soil in plastic lined 15×15 cm pots for 155 days and watered daily. Half of these pots received 12.5% Hoagland’s solution as a nutrient source. Growth measurements were taken 3 times, after a 72 day establishment period and prior to harvest. The plants were then harvested intact, dried at 60°C, and above and below ground dry mass for each individual plant was separated. The roots were ashed at 650°C and measurements were taken for the above and below ground biomass. 

*Results/Conclusions* 
The growth parameters of _Acacia berlandieri_, basal diameter, height, and number of leaves increased with density (P = 0.0024, P < 0.0001, and P < 0.0001), when grown in competition with _Trichloris pluriflora_, using the densities of 1/3, 2/2. 3/1, and 4/0 _Acacia/Trichloris_ plants/pot. None of these growth parameters for _A. berlandieri_ had an effect on the variables of density, nutrients or and their interaction (P > 0.0500), when grown alone with densities of 1, 2, and 4 plants/pot. The growth parameters of _T. pluriflora_, culms and height decreased with density (P = 0.0077 and P = 0.0006), when grown in competition with _A. berlandieri_, using densities of 1/3, 2/2. 3/1, and 4/0 _Trichloris/Acacia_ plants/pot. The culms, tillers, and height of _T. pluriflora_, when grown alone with densities of 1, 2, 4, and 8 plants/pot, decreased with density (P < 0.0001, P = 0.0312, and P < 0.0001). The measurement parameters of harvested _A. berlandieri_, above ground biomass and ash-free root biomass increased with density (P = 0.0463 and P = 0.0389), when grown in competition with _T. pluriflora_. The root biomass of harvested _A. berlandieri_, grown alone, decreased with the interaction of density and nutrients (P = 0.0068). The total plant dry mass, above ground biomass, root dry mass, and root dry mass of harvested _T. pluriflora_, grown in competition with _A. berlandieri_, decreased with density (P < 0.0001, P < 0.0001, P = 0.0235, and P = 0.0145). These same measurement parameters of harvested _T. pluriflora_, grown alone, increased with density (P < 0.0001 for all four). The addition of nutrients had no effect on the growth or harvest of _A. berlandieri_ and _T. pluriflora_ for either intra- or interspecific competition. Instead, density appeared to be the driving force for the competition between and among these two species for both growth and harvest. Although woody shrub and grassland interactions should be mediated by resource availability, that was not the case in this study. Clearly, density is an important variable involved in the disappearance of the grasslands

    Weed occurrence in Finnish coastal regions: a survey of organically cropped spring cereals

    Get PDF
    Weed communities of organically cropped spring cereal stands in the southern and the northwestern coastal regions of Finland (= south and northwest, respectively) were compared with respect to number of species, frequency of occurrence, density and dry weight. Regional specialization of agricultural production along with differences in climate and soil properties were expected to generate differences in weed communities between south and northwest. Total and average numbers of species were higher in the south than in the northwest (33 vs. 26 and 15.6 vs. 10.0, respectively). Some rare species (e.g. Papaver dubium) were found in the south. Fumaria officinalis and Lamium spp. were found only in the south. The densities and dry weights of Lapsana communis, Myosotis arvensis, Polygonum aviculare, Tripleurospermum inodorum and Vicia spp. were higher in the south, while the densities and dry weights of Elymus repens, Persicaria spp. and Spergula arvensis were higher in the northwest. Total density of weeds did not differ between south and northwest (average = 565 vs. 570 shoots m-2, respectively). Total dry weight of weeds was higher in the northwest compared with the south (average = 1594 vs. 697 kg ha-1, respectively), mainly due to the high dry weight of E. repens. The only variable that was dependent on the duration of organic farming was weed density in the south. The abundance of nitrophilous in relation to non-nitrophilous weed species was higher while the abundance of perennial ruderal and grassland weed species was lower compared with previous weed surveys. This can be regarded as the result of increasing cropping intensity on organic farms in Finland. Different weed communities call for the application of specific target-oriented weed management in the respective coastal regions

    Bulk Density Protocol

    Get PDF
    The purpose of this resource is to measure the bulk density of each horizon in a soil profile. In the field, students collect three soil samples from each horizon in a soil profile using a container with a measured volume. In the classroom, students weigh the samples, dry them, and weigh them again to determine their dry mass and water content. Students then sieve the dry soil samples and measure the mass and volume of any rocks and material with dimensions greater than 2 mm. Students use the Bulk Density Data Sheet to calculate the soil bulk density for each sample. Educational levels: Middle school, High school

    Feasibility study on application of microwave radiometry to monitor contamination level on insulator materials

    Get PDF
    This paper introduces a novel method for monitoring contamination levels on high voltage insulators based on microwave radiometry. Present contamination monitoring solutions for high voltage insulators are only effective in predicting flashover risk when the contamination layer has been wetted by rain, fog or condensation. The challenge comes where the pollution occurs during a dry period prior to a weather change. Under these conditions, flashover can often occur within a short time period after wetting and is not predicted by measurements taken in the dry period. The microwave radiometer system described in this paper measures energy emitted from the contamination layer and could provide a safe, reliable, contactless monitoring method that is effective under dry conditions. The relationship between equivalent salt deposit density and radiometer output is described using a theoretical model and experimentally verified using a specially designed X-band radiometer. Results demonstrate that the output from the radiometer is able to clearly distinguish between different levels of contamination on insulator materials under dry conditions. This novel contamination monitoring method could potentially provide advance warning of the future failure of wet insulators in climates where insulators can experience dry conditions for extended periods

    Geodetic distance measuring apparatus

    Get PDF
    A mode locked laser system including a laser device and its peripheral components is utilized for deriving two mutually phase locked optical wavelength signals and one phase locked microwave CW signal which respectively traverse the same distance measurement path. Preferably the optical signals are comprised of pulse type signals. Phase comparison of the two optical wavelength pulse signals is used to provide a measure of the dry air density while phase comparison of one of the optical wavelength pulse signals and the microwave CW signal is used to provide a measure of the wet or water vapor density of the air. From these measurements is computed in means of the distance to be measured corrected for the atmospheric dry and water vapor densities in the measurement path
    corecore