1,203 research outputs found

    Representation learning of drug and disease terms for drug repositioning

    Full text link
    Drug repositioning (DR) refers to identification of novel indications for the approved drugs. The requirement of huge investment of time as well as money and risk of failure in clinical trials have led to surge in interest in drug repositioning. DR exploits two major aspects associated with drugs and diseases: existence of similarity among drugs and among diseases due to their shared involved genes or pathways or common biological effects. Existing methods of identifying drug-disease association majorly rely on the information available in the structured databases only. On the other hand, abundant information available in form of free texts in biomedical research articles are not being fully exploited. Word-embedding or obtaining vector representation of words from a large corpora of free texts using neural network methods have been shown to give significant performance for several natural language processing tasks. In this work we propose a novel way of representation learning to obtain features of drugs and diseases by combining complementary information available in unstructured texts and structured datasets. Next we use matrix completion approach on these feature vectors to learn projection matrix between drug and disease vector spaces. The proposed method has shown competitive performance with state-of-the-art methods. Further, the case studies on Alzheimer's and Hypertension diseases have shown that the predicted associations are matching with the existing knowledge.Comment: Accepted to appear in 3rd IEEE International Conference on Cybernetics (Spl Session: Deep Learning for Prediction and Estimation

    Drug Repositioning Based on Bounded Nuclear Norm Regularization

    Get PDF
    Motivation: Computational drug repositioning is a cost-effective strategy to identify novel indications for existing drugs. Drug repositioning is often modeled as a recommendation system problem. Taking advantage of the known drug–disease associations, the objective of the recommendation system is to identify new treatments by filling out the unknown entries in the drug–disease association matrix, which is known as matrix completion. Underpinned by the fact that common molecular pathways contribute to many different diseases, the recommendation system assumes that the underlying latent factors determining drug–disease associations are highly correlated. In other words, the drug–disease matrix to be completed is low-rank. Accordingly, matrix completion algorithms efficiently constructing low-rank drug–disease matrix approximations consistent with known associations can be of immense help in discovering the novel drug–disease associations. Results: In this article, we propose to use a bounded nuclear norm regularization (BNNR) method to complete the drug–disease matrix under the low-rank assumption. Instead of strictly fitting the known elements, BNNR is designed to tolerate the noisy drug–drug and disease–disease similarities by incorporating a regularization term to balance the approximation error and the rank properties. Moreover, additional constraints are incorporated into BNNR to ensure that all predicted matrix entry values are within the specific interval. BNNR is carried out on an adjacency matrix of a heterogeneous drug–disease network, which integrates the drug–drug, drug–disease and disease–disease networks. It not only makes full use of available drugs, diseases and their association information, but also is capable of dealing with cold start naturally. Our computational results show that BNNR yields higher drug–disease association prediction accuracy than the current state-of-the-art methods. The most significant gain is in prediction precision measured as the fraction of the positive predictions that are truly positive, which is particularly useful in drug design practice. Cases studies also confirm the accuracy and reliability of BNNR. Availability and implementation: The code of BNNR is freely available at https://github.com/BioinformaticsCSU/BNNR. Supplementary information Supplementary data are available at Bioinformatics online

    SAveRUNNER: a network-based algorithm for drug repurposing and its application to COVID-19

    Get PDF
    The novelty of new human coronavirus COVID-19/SARS-CoV-2 and the lack of effective drugs and vaccines gave rise to a wide variety of strategies employed to fight this worldwide pandemic. Many of these strategies rely on the repositioning of existing drugs that could shorten the time and reduce the cost compared to de novo drug discovery. In this study, we presented a new network-based algorithm for drug repositioning, called SAveRUNNER (Searching off-lAbel dRUg aNd NEtwoRk), which predicts drug-disease associations by quantifying the interplay between the drug targets and the disease-specific proteins in the human interactome via a novel network-based similarity measure that prioritizes associations between drugs and diseases locating in the same network neighborhoods. Specifically, we applied SAveRUNNER on a panel of 14 selected diseases with a consolidated knowledge about their disease-causing genes and that have been found to be related to COVID-19 for genetic similarity, comorbidity, or for their association to drugs tentatively repurposed to treat COVID-19. Focusing specifically on SARS subnetwork, we identified 282 repurposable drugs, including some the most rumored off-label drugs for COVID-19 treatments, as well as a new combination therapy of 5 drugs, actually used in clinical practice. Furthermore, to maximize the efficiency of putative downstream validation experiments, we prioritized 24 potential anti-SARS-CoV repurposable drugs based on their network-based similarity values. These top-ranked drugs include ACE-inhibitors, monoclonal antibodies, and thrombin inhibitors. Finally, our findings were in-silico validated by performing a gene set enrichment analysis, which confirmed that most of the network-predicted repurposable drugs may have a potential treatment effect against human coronavirus infections.Comment: 42 pages, 9 figure

    SAveRUNNER: an R-based tool for drug repurposing

    Get PDF
    Background: Currently, no proven effective drugs for the novel coronavirus disease COVID-19 exist and despite widespread vaccination campaigns, we are far short from herd immunity. The number of people who are still vulnerable to the virus is too high to hamper new outbreaks, leading a compelling need to find new therapeutic options devoted to combat SARS-CoV-2 infection. Drug repurposing represents an effective drug discovery strategy from existing drugs that could shorten the time and reduce the cost compared to de novo drug discovery. Results: We developed a network-based tool for drug repurposing provided as a freely available R-code, called SAveRUNNER (Searching off-lAbel dRUg aNd NEtwoRk), with the aim to offer a promising framework to efficiently detect putative novel indications for currently marketed drugs against diseases of interest. SAveRUNNER predicts drug–disease associations by quantifying the interplay between the drug targets and the disease-associated proteins in the human interactome through the computation of a novel network-based similarity measure, which prioritizes associations between drugs and diseases located in the same network neighborhoods. Conclusions: The algorithm was successfully applied to predict off-label drugs to be repositioned against the new human coronavirus (2019-nCoV/SARS-CoV-2), and it achieved a high accuracy in the identification of well-known drug indications, thus revealing itself as a powerful tool to rapidly detect potential novel medical indications for various drugs that are worth of further investigation. SAveRUNNER source code is freely available at https://github.com/giuliafiscon/SAveRUNNER.git, along with a comprehensive user guide

    RESKO: Repositioning drugs by using side effects and knowledge from ontologies

    Get PDF
    The objective of drug repositioning is to apply existing drugs to different diseases or medical conditions than the original target, and thus alleviate to a certain extent the time and cost expended in drug development. Our system RESKO, REpositioning drugs using Side Effects and Knowledge from Ontologies, identifies drugs with similar side-effects which are potential candidates for use elsewhere, the supposition is that similar side-effects may be caused by drugs targeting similar proteins and pathways. RESKO, integrates drug chemical data, protein interaction and ontological knowledge. The novel aspects of our system include a high level of biological knowledge through the use of pathway and biological ontology integration. This provides a explanation facility lacking in most of the existing methods and improves the repositioning process. We evaluate the shared side effects from the eight conventional Alzheimer drugs, from which sixty-seven candidate drugs based on a side-effect commonality were identified. The top 25 drugs on the list were further investigated in depth for their suitability to be repositioned, the literature revealed that many of the candidate drugs appear to have been trialed for Alzheimer's disease. Thus verifying the accuracy of our system, we also compare our technique with several competing systems found in the literature

    Overlap Matrix Completion for Predicting Drug-Associated Indications

    Get PDF
    Identification of potential drug-associated indications is critical for either approved or novel drugs in drug repositioning. Current computational methods based on drug similarity and disease similarity have been developed to predict drug-disease associations. When more reliable drug- or disease-related information becomes available and is integrated, the prediction precision can be continuously improved. However, it is a challenging problem to effectively incorporate multiple types of prior information, representing different characteristics of drugs and diseases, to identify promising drug-disease associations. In this study, we propose an overlap matrix completion (OMC) for bilayer networks (OMC2) and tri-layer networks (OMC3) to predict potential drug-associated indications, respectively. OMC is able to efficiently exploit the underlying low-rank structures of the drug-disease association matrices. In OMC2, first of all, we construct one bilayer network from drug-side aspect and one from disease-side aspect, and then obtain their corresponding block adjacency matrices. We then propose the OMC2 algorithm to fill out the values of the missing entries in these two adjacency matrices, and predict the scores of unknown drug-disease pairs. Moreover, we further extend OMC2 to OMC3 to handle tri-layer networks. Computational experiments on various datasets indicate that our OMC methods can effectively predict the potential drug-disease associations. Compared with the other state-of-the-art approaches, our methods yield higher prediction accuracy in 10-fold cross-validation and de novo experiments. In addition, case studies also confirm the effectiveness of our methods in identifying promising indications for existing drugs in practical applications
    • …
    corecore