37,106 research outputs found

    Discrimination of moderate and acute drowsiness based on spontaneous facial expressions

    Get PDF
    It is important for drowsiness detection systems to identify different levels of drowsiness and respond appropriately at each level. This study explores how to discriminate moderate from acute drowsiness by applying computer vision techniques to the human face. In our previous study, spontaneous facial expressions measured through computer vision techniques were used as an indicator to discriminate alert from acutely drowsy episodes. In this study we are exploring which facial muscle movements are predictive of moderate and acute drowsiness. The effect of temporal dynamics of action units on prediction performances is explored by capturing temporal dynamics using an overcomplete representation of temporal Gabor Filters. In the final system we perform feature selection to build a classifier that can discriminate moderate drowsy from acute drowsy episodes. The system achieves a classification rate of .96 A’ in discriminating moderately drowsy versus acutely drowsy episodes. Moreover the study reveals new information in facial behavior occurring during different stages of drowsiness

    Automated drowsiness detection for improved driving safety

    Get PDF
    Several approaches were proposed for the detection and prediction of drowsiness. The approaches can be categorized as estimating the fitness of duty, modeling the sleep-wake rhythms, measuring the vehicle based performance and online operator monitoring. Computer vision based online operator monitoring approach has become prominent due to its predictive ability of detecting drowsiness. Previous studies with this approach detect driver drowsiness primarily by making preassumptions about the relevant behavior, focusing on blink rate, eye closure, and yawning. Here we employ machine learning to datamine actual human behavior during drowsiness episodes. Automatic classifiers for 30 facial actions from the Facial Action Coding system were developed using machine learning on a separate database of spontaneous expressions. These facial actions include blinking and yawn motions, as well as a number of other facial movements. In addition, head motion was collected through automatic eye tracking and an accelerometer. These measures were passed to learning-based classifiers such as Adaboost and multinomial ridge regression. The system was able to predict sleep and crash episodes during a driving computer game with 96% accuracy within subjects and above 90% accuracy across subjects. This is the highest prediction rate reported to date for detecting real drowsiness. Moreover, the analysis revealed new information about human behavior during drowsy drivin

    Learning to Estimate Driver Drowsiness from Car Acceleration Sensors using Weakly Labeled Data

    Full text link
    This paper addresses the learning task of estimating driver drowsiness from the signals of car acceleration sensors. Since even drivers themselves cannot perceive their own drowsiness in a timely manner unless they use burdensome invasive sensors, obtaining labeled training data for each timestamp is not a realistic goal. To deal with this difficulty, we formulate the task as a weakly supervised learning. We only need to add labels for each complete trip, not for every timestamp independently. By assuming that some aspects of driver drowsiness increase over time due to tiredness, we formulate an algorithm that can learn from such weakly labeled data. We derive a scalable stochastic optimization method as a way of implementing the algorithm. Numerical experiments on real driving datasets demonstrate the advantages of our algorithm against baseline methods.Comment: Accepted by ICASSP202

    Driver drowsiness classification using fuzzy wavelet-packet-based feature-extraction algorithm

    Full text link
    Driver drowsiness and loss of vigilance are a major cause of road accidents. Monitoring physiological signals while driving provides the possibility of detecting and warning of drowsiness and fatigue. The aim of this paper is to maximize the amount of drowsiness-related information extracted from a set of electroencephalogram (EEG), electrooculogram (EOG), and electrocardiogram (ECG) signals during a simulation driving test. Specifically, we develop an efficient fuzzy mutual-information (MI)- based wavelet packet transform (FMIWPT) feature-extraction method for classifying the driver drowsiness state into one of predefined drowsiness levels. The proposed method estimates the required MI using a novel approach based on fuzzy memberships providing an accurate-information content-estimation measure. The quality of the extracted features was assessed on datasets collected from 31 drivers on a simulation test. The experimental results proved the significance of FMIWPT in extracting features that highly correlate with the different drowsiness levels achieving a classification accuracy of 95%-97% on an average across all subjects. © 2011 IEEE
    corecore