687 research outputs found

    Dropout Distillation for Efficiently Estimating Model Confidence

    Full text link
    We propose an efficient way to output better calibrated uncertainty scores from neural networks. The Distilled Dropout Network (DDN) makes standard (non-Bayesian) neural networks more introspective by adding a new training loss which prevents them from being overconfident. Our method is more efficient than Bayesian neural networks or model ensembles which, despite providing more reliable uncertainty scores, are more cumbersome to train and slower to test. We evaluate DDN on the the task of image classification on the CIFAR-10 dataset and show that our calibration results are competitive even when compared to 100 Monte Carlo samples from a dropout network while they also increase the classification accuracy. We also propose better calibration within the state of the art Faster R-CNN object detection framework and show, using the COCO dataset, that DDN helps train better calibrated object detectors

    Evaluating Merging Strategies for Sampling-based Uncertainty Techniques in Object Detection

    Full text link
    There has been a recent emergence of sampling-based techniques for estimating epistemic uncertainty in deep neural networks. While these methods can be applied to classification or semantic segmentation tasks by simply averaging samples, this is not the case for object detection, where detection sample bounding boxes must be accurately associated and merged. A weak merging strategy can significantly degrade the performance of the detector and yield an unreliable uncertainty measure. This paper provides the first in-depth investigation of the effect of different association and merging strategies. We compare different combinations of three spatial and two semantic affinity measures with four clustering methods for MC Dropout with a Single Shot Multi-Box Detector. Our results show that the correct choice of affinity-clustering combination can greatly improve the effectiveness of the classification and spatial uncertainty estimation and the resulting object detection performance. We base our evaluation on a new mix of datasets that emulate near open-set conditions (semantically similar unknown classes), distant open-set conditions (semantically dissimilar unknown classes) and the common closed-set conditions (only known classes).Comment: to appear in IEEE International Conference on Robotics and Automation 2019 (ICRA 2019

    Efficiently Robustify Pre-trained Models

    Full text link
    A recent trend in deep learning algorithms has been towards training large scale models, having high parameter count and trained on big dataset. However, robustness of such large scale models towards real-world settings is still a less-explored topic. In this work, we first benchmark the performance of these models under different perturbations and datasets thereby representing real-world shifts, and highlight their degrading performance under these shifts. We then discuss on how complete model fine-tuning based existing robustification schemes might not be a scalable option given very large scale networks and can also lead them to forget some of the desired characterstics. Finally, we propose a simple and cost-effective method to solve this problem, inspired by knowledge transfer literature. It involves robustifying smaller models, at a lower computation cost, and then use them as teachers to tune a fraction of these large scale networks, reducing the overall computational overhead. We evaluate our proposed method under various vision perturbations including ImageNet-C,R,S,A datasets and also for transfer learning, zero-shot evaluation setups on different datasets. Benchmark results show that our method is able to induce robustness to these large scale models efficiently, requiring significantly lower time and also preserves the transfer learning, zero-shot properties of the original model which none of the existing methods are able to achieve

    Generative Adversarial Networks (GANs): Challenges, Solutions, and Future Directions

    Full text link
    Generative Adversarial Networks (GANs) is a novel class of deep generative models which has recently gained significant attention. GANs learns complex and high-dimensional distributions implicitly over images, audio, and data. However, there exists major challenges in training of GANs, i.e., mode collapse, non-convergence and instability, due to inappropriate design of network architecture, use of objective function and selection of optimization algorithm. Recently, to address these challenges, several solutions for better design and optimization of GANs have been investigated based on techniques of re-engineered network architectures, new objective functions and alternative optimization algorithms. To the best of our knowledge, there is no existing survey that has particularly focused on broad and systematic developments of these solutions. In this study, we perform a comprehensive survey of the advancements in GANs design and optimization solutions proposed to handle GANs challenges. We first identify key research issues within each design and optimization technique and then propose a new taxonomy to structure solutions by key research issues. In accordance with the taxonomy, we provide a detailed discussion on different GANs variants proposed within each solution and their relationships. Finally, based on the insights gained, we present the promising research directions in this rapidly growing field.Comment: 42 pages, Figure 13, Table

    SLaM: Student-Label Mixing for Distillation with Unlabeled Examples

    Full text link
    Knowledge distillation with unlabeled examples is a powerful training paradigm for generating compact and lightweight student models in applications where the amount of labeled data is limited but one has access to a large pool of unlabeled data. In this setting, a large teacher model generates ``soft'' pseudo-labels for the unlabeled dataset which are then used for training the student model. Despite its success in a wide variety of applications, a shortcoming of this approach is that the teacher's pseudo-labels are often noisy, leading to impaired student performance. In this paper, we present a principled method for knowledge distillation with unlabeled examples that we call Student-Label Mixing (SLaM) and we show that it consistently improves over prior approaches by evaluating it on several standard benchmarks. Finally, we show that SLaM comes with theoretical guarantees; along the way we give an algorithm improving the best-known sample complexity for learning halfspaces with margin under random classification noise, and provide the first convergence analysis for so-called ``forward loss-adjustment" methods
    corecore