32,748 research outputs found

    Power-Based Droop Control in DC Microgrids Enabling Seamless Disconnection From Upstream Grids

    Get PDF
    This paper proposes a local power-based droop controller for distributed energy resource converters in dc microgrids that are connected to upstream grids by grid-interface converters. During normal operation, the grid-interface converter imposes the microgrid bus voltage, and the proposed controller allows power flow regulation at distributed energy resource converters\u2019 output. On the other hand, during abnormal operation of the grid-interface converter (e.g., due to faults in the upstream grid), the proposed controller allows bus voltage regulation by droop control. Notably, the controller can autonomously convert from power flow control to droop control, without any need of bus voltage variation detection schemes or communication with other microgrid components, which enables seamless transitions between these two modes of operation. Considering distributed energy resource converters employing the power-based droop control, the operation modes of a single converter and of the whole microgrid are defined and investigated herein. The controller design is also introduced. Furthermore, the power sharing performance of this control approach is analyzed and compared with that of classical droop control. The experimental results from a laboratory-scale dc microgrid prototype are reported to show the final performances of the proposed power-based droop control

    Plug and Play DC-DC Converters for Smart DC Nanogrids with Advanced Control Ancillary Services

    Get PDF
    This paper gives a general view of the control possibilities for dc-dc converters in dc nanogrids. A widely adopted control method is the droop control, which is able to achieve proportional load sharing among multiple sources and to stabilize the voltage of the dc distribution bus. Based on the droop control, several advanced control functions can be implemented. For example, power-based droop controllers allow dc-dc converters to operate with power flow control or droop control, whether the hosting nanogrid is operating connected to a strong upstream grid or it is operating autonomously (i.e., islanded). Converters can also be equipped with various supporting functions. Functions that are expected to play a crucial role in nanogrids that fully embrace the plug-and-play paradigm are those aiming at the monitoring and tuning of the key performance indices of the control loops. On-line stability monitoring tools respond to this need, by continuously providing estimates of the stability margins of the loops of interest; self- tuning can be eventually achieved on the basis of the obtained estimates. These control solutions can significantly enhance the operation and the plug-and-play feature of dc nanogrids, even with a variable number of hosted converters. Experimental results are reported to show the performance of the control approaches

    Structural Resemblance Between Droop Controllers and Phase-Locked Loops

    Get PDF
    It is well known that droop control is fundamental to the operation of power systems and now the parallel operation of inverters while phase-locked loops (PLL) are widely adopted in modern electrical engineering. In this paper, it is shown at first that droop control and PLLs structurally resemble each other. This bridges the gap between the two communities working on droop control and PLLs. As a result, droop controllers and PLLs can be improved and further developed via adopting the advancements in the other field. This finding is then applied to operate the conventional droop controller for inverters with inductive output impedance to achieve the function of PLLs, without having a dedicated synchronization unit. Extensive experimental results are provided to validate the theoretical analysis

    High speed research system study. Advanced flight deck configuration effects

    Get PDF
    In mid-1991 NASA contracted with industry to study the high-speed civil transport (HSCT) flight deck challenges and assess the benefits, prior to initiating their High Speed Research Program (HSRP) Phase 2 efforts, then scheduled for FY-93. The results of this nine-month effort are presented, and a number of the most significant findings for the specified advanced concepts are highlighted: (1) a no nose-droop configuration; (2) a far forward cockpit location; and (3) advanced crew monitoring and control of complex systems. The results indicate that the no nose-droop configuration is critically dependent upon the design and development of a safe, reliable, and certifiable Synthetic Vision System (SVS). The droop-nose configuration would cause significant weight, performance, and cost penalties. The far forward cockpit location, with the conventional side-by-side seating provides little economic advantage; however, a configuration with a tandem seating arrangement provides a substantial increase in either additional payload (i.e., passengers) or potential downsizing of the vehicle with resulting increases in performance efficiencies and associated reductions in emissions. Without a droop nose, forward external visibility is negated and takeoff/landing guidance and control must rely on the use of the SVS. The technologies enabling such capabilities, which de facto provides for Category 3 all-weather operations on every flight independent of weather, represent a dramatic benefits multiplier in a 2005 global ATM network: both in terms of enhanced economic viability and environmental acceptability

    Automatic power sharing modification of P/V droop controllers in low-voltage resistive microgrids

    Get PDF
    Microgrids are receiving an increasing interest to integrate the growing share of distributed generation (DG) units in the electrical network. For the islanded operation of the microgrid, several control strategies for the primary control have been developed to ensure a stable microgrid operation. In lowvoltage microgrids, active power/voltage (P/V ) droop controllers are gaining attention as they take into account the resistive nature of the network lines and the lack of directly-coupled rotating inertia. However, a problem often cited with these droop controllers is that the grid voltage is not a global parameter. This can influence the power sharing between different units. In this paper, it is investigated whether this is actually a disadvantage of the control strategy. It is shown that with P/V droop control, the DG units that are located electrically far from the load centres automatically deliver a lower share of the power. This automatic power sharing modification can lead to decreased line losses, thus, an overall better efficiency compared to the methods that focus on perfect power sharing. In this paper, the P/V and P/f droop control strategies are compared with respect to this power sharing modification and the line losses
    corecore