44,745 research outputs found

    Power-Based Droop Control in DC Microgrids Enabling Seamless Disconnection From Upstream Grids

    Get PDF
    This paper proposes a local power-based droop controller for distributed energy resource converters in dc microgrids that are connected to upstream grids by grid-interface converters. During normal operation, the grid-interface converter imposes the microgrid bus voltage, and the proposed controller allows power flow regulation at distributed energy resource converters\u2019 output. On the other hand, during abnormal operation of the grid-interface converter (e.g., due to faults in the upstream grid), the proposed controller allows bus voltage regulation by droop control. Notably, the controller can autonomously convert from power flow control to droop control, without any need of bus voltage variation detection schemes or communication with other microgrid components, which enables seamless transitions between these two modes of operation. Considering distributed energy resource converters employing the power-based droop control, the operation modes of a single converter and of the whole microgrid are defined and investigated herein. The controller design is also introduced. Furthermore, the power sharing performance of this control approach is analyzed and compared with that of classical droop control. The experimental results from a laboratory-scale dc microgrid prototype are reported to show the final performances of the proposed power-based droop control

    Efficiency droop in InGaN/GaN multiple quantum well light-emitting diodes with nonuniform current spreading

    Get PDF
    We demonstrate that the efficiency droop phenomenon in multiple quantum well InGaN/GaN light-emitting diodes (LEDs) may be connected to the current crowding effect. A numerical model of internal quantum efficiency calculation is presented that takes into account nonuniform lateral carrier injection in the active region. Based on this model, we examine the effect of current crowding on the efficiency droop using comparison of simulated internal quantum efficiency of InGaN LEDs with low and high uniformity of current spreading. The results of simulations and measurements show that the devices with low uniformity of current spreading exhibit higher efficiency droop and lower roll-off current value

    Plug and Play DC-DC Converters for Smart DC Nanogrids with Advanced Control Ancillary Services

    Get PDF
    This paper gives a general view of the control possibilities for dc-dc converters in dc nanogrids. A widely adopted control method is the droop control, which is able to achieve proportional load sharing among multiple sources and to stabilize the voltage of the dc distribution bus. Based on the droop control, several advanced control functions can be implemented. For example, power-based droop controllers allow dc-dc converters to operate with power flow control or droop control, whether the hosting nanogrid is operating connected to a strong upstream grid or it is operating autonomously (i.e., islanded). Converters can also be equipped with various supporting functions. Functions that are expected to play a crucial role in nanogrids that fully embrace the plug-and-play paradigm are those aiming at the monitoring and tuning of the key performance indices of the control loops. On-line stability monitoring tools respond to this need, by continuously providing estimates of the stability margins of the loops of interest; self- tuning can be eventually achieved on the basis of the obtained estimates. These control solutions can significantly enhance the operation and the plug-and-play feature of dc nanogrids, even with a variable number of hosted converters. Experimental results are reported to show the performance of the control approaches

    Analysis of the effect of clock drifts on frequency regulation and power sharing in inverter-based islanded microgrids

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Local hardware clocks in physically distributed computation devices hardly ever agree because clocks drift apart and the drift can be different for each device. This paper analyses the effect that local clock drifts have in the parallel operation of voltage source inverters (VSIs) in islanded microgrids (MG). The state-of-the-art control policies for frequency regulation and active power sharing in VSIs-based MGs are reviewed and selected prototype policies are then re-formulated in terms of clock drifts. Next, steady-state properties for these policies are analyzed. For each of the policies, analytical expressions are developed to provide an exact quantification of the impact that drifts have on frequency and active power equilibrium points. In addition, a closed-loop model that accommodates all the policies is derived, and the stability of the equilibrium points is characterized in terms of the clock drifts. Finally, the implementation of the analyzed policies in a laboratory MG provides experimental results that confirm the theoretical analysis.Peer ReviewedPostprint (author's final draft

    Overview of increasing the penetration of renewable energy sources in the distribution grid by developing control strategies and using ancillary services

    Get PDF
    Increasing the renewables energy resources in the distribution network is one of the main challenges of the distributed system operator due to instability, power quality and feeder capacity problems. This paper proposes a solution for further penetration of distributed energy resources, by developing control strategies and using ancillary services. Besides the penetration issues, the control strategies will mitigate power quality problems, voltage unbalance and will increase the immunity of the grid by provision of fault ride through capabilities

    Unified reference controller for flexible primary control and inertia sharing in multi-terminal voltage source converter-HVDC grids

    Get PDF
    Multi-terminal dc (MTDC) grids are expected to be built and experience rapid expansion in the near future as they have emerged as a competitive solution for transmitting offshore wind generation and overlaying their ac counterpart. The concept of inertia sharing for the control and operation of MTDC grids, which can be achieved by the proposed unified reference controller. The control objectives of the MTDC grids voltage source converter (VSC) stations are no longer limited to the stabilisation of MTDC grid, instead, the requirements of ac side are also met. The interaction dynamics between the ac and dc grid is analysed to illustrate the proposed concept. In addition, the voltage source converter stations can work in different operation modes based on the proposed unified control structure, and can switch among the operation modes smoothly following the secondary control commands. Simulation results exhibit the merits and satisfactory performance of the proposed control strategy for stable MTDC grid operation.Peer ReviewedPostprint (author's final draft
    corecore