3,068 research outputs found

    Virtual to Real Reinforcement Learning for Autonomous Driving

    Full text link
    Reinforcement learning is considered as a promising direction for driving policy learning. However, training autonomous driving vehicle with reinforcement learning in real environment involves non-affordable trial-and-error. It is more desirable to first train in a virtual environment and then transfer to the real environment. In this paper, we propose a novel realistic translation network to make model trained in virtual environment be workable in real world. The proposed network can convert non-realistic virtual image input into a realistic one with similar scene structure. Given realistic frames as input, driving policy trained by reinforcement learning can nicely adapt to real world driving. Experiments show that our proposed virtual to real (VR) reinforcement learning (RL) works pretty well. To our knowledge, this is the first successful case of driving policy trained by reinforcement learning that can adapt to real world driving data

    Optimal Drunk Driving Penalty Structure

    Get PDF
    The expected penalty for drunk driving can and does vary by blood alcohol content. This paper outlines the "penalty structure" that does this optimally, using two different metrics, shows how the optimality conditions can be implemented with available data to analyze policy ex ante or ex post, and then uses these findings to investigate four fundamental features of current U.S. drunk driving policy. The paper provides theoretical and empirical support for large penalties at very high alcohol concentrations, but not for reductions in per se blood alcohol thresholds, the most significant recent change in drunk driving policy.

    A Fast Integrated Planning and Control Framework for Autonomous Driving via Imitation Learning

    Full text link
    For safe and efficient planning and control in autonomous driving, we need a driving policy which can achieve desirable driving quality in long-term horizon with guaranteed safety and feasibility. Optimization-based approaches, such as Model Predictive Control (MPC), can provide such optimal policies, but their computational complexity is generally unacceptable for real-time implementation. To address this problem, we propose a fast integrated planning and control framework that combines learning- and optimization-based approaches in a two-layer hierarchical structure. The first layer, defined as the "policy layer", is established by a neural network which learns the long-term optimal driving policy generated by MPC. The second layer, called the "execution layer", is a short-term optimization-based controller that tracks the reference trajecotries given by the "policy layer" with guaranteed short-term safety and feasibility. Moreover, with efficient and highly-representative features, a small-size neural network is sufficient in the "policy layer" to handle many complicated driving scenarios. This renders online imitation learning with Dataset Aggregation (DAgger) so that the performance of the "policy layer" can be improved rapidly and continuously online. Several exampled driving scenarios are demonstrated to verify the effectiveness and efficiency of the proposed framework

    An Agent-based Modelling Framework for Driving Policy Learning in Connected and Autonomous Vehicles

    Get PDF
    Due to the complexity of the natural world, a programmer cannot foresee all possible situations, a connected and autonomous vehicle (CAV) will face during its operation, and hence, CAVs will need to learn to make decisions autonomously. Due to the sensing of its surroundings and information exchanged with other vehicles and road infrastructure, a CAV will have access to large amounts of useful data. While different control algorithms have been proposed for CAVs, the benefits brought about by connectedness of autonomous vehicles to other vehicles and to the infrastructure, and its implications on policy learning has not been investigated in literature. This paper investigates a data driven driving policy learning framework through an agent-based modelling approaches. The contributions of the paper are two-fold. A dynamic programming framework is proposed for in-vehicle policy learning with and without connectivity to neighboring vehicles. The simulation results indicate that while a CAV can learn to make autonomous decisions, vehicle-to-vehicle (V2V) communication of information improves this capability. Furthermore, to overcome the limitations of sensing in a CAV, the paper proposes a novel concept for infrastructure-led policy learning and communication with autonomous vehicles. In infrastructure-led policy learning, road-side infrastructure senses and captures successful vehicle maneuvers and learns an optimal policy from those temporal sequences, and when a vehicle approaches the road-side unit, the policy is communicated to the CAV. Deep-imitation learning methodology is proposed to develop such an infrastructure-led policy learning framework

    Cause-specific mortality as a sentinel indicator of current socioeconomic conditions in Italy

    Get PDF
    This study aims to assess whether simple, widely available demographic indexes, like mortality measures, may serve as sentinel indicators of the economic development and the social wellbeing in Italy. We analyze and compare the geographical patterns of all-cause mortality indexes and those of the mortality rates for leading causes of death, with the spatial pattern found for a more complex index, the vulnerability index, recently introduced by the Italian National Institute for Statistics, at provincial level in the contemporary Italy. We show that mortality data are a straightforward and powerful tool for driving policy makers in planning appropriate interventions
    • …
    corecore