4 research outputs found

    Resource Allocation for Vertical Sectorization in LTE-Advanced Systems

    Get PDF
    Massive multiple input multiple output (MIMO) technology has been discussed widely in the past few years. Three-dimensional MIMO (3D MIMO) can be seen as a promising technique to realize massive MIMO to enhance the performance of LTE-Advanced systems. Vertical sectorization can be introduced by means of adjusting the downtilt of transmitting antennas. Thus, the radiowave from a base station (BS) to a group of user equipments (UE) can be divided into two beams which point at two different areas within a cell. Intrasector interference is inevitable since the resources are overlapped. In this paper, the influence of intrasector interference is analyzed and an enhanced resource allocation scheme for vertical sectorization is proposed as a method of interference cancellation. Compared with the conventional 2D MIMO scenarios, cell average throughput of the whole system can be improved by vertical sectorization. System level simulation is performed to evaluate the performance of the proposed scheme. In addition, the impacts of downtilt parameters and intersite distance (ISD) on spectral efficiency and cell coverage are presented

    Self-Optimization of Coverage and Capacity in LTE using Adaptive Antenna Systems

    Get PDF
    In cellular radio networks, the selection of antenna parameters and techniques for antennas plays a key role for capacity and coverage area. Not only network performance is affected by suboptimal network planning but also it is affected by the dynamic radio environment. Therefore, antenna parameters should be adjusted adaptively. Since reacting to the changed situation manually is very expensive and time consuming, The Third Generation Partnership Project (3GPP) introduced the Coverage and Capacity Optimization (CCO) use case for Long Term Evolution (LTE) under the topic of Self-Organizing Network (SON). This thesis work provides a detailed analysis of the optimization space of antenna parameters and compares different tilt techniques as well as discusses vertical sectorization as a novel capacity optimization approach. The work continues by further focusing on the self optimization of coverage and capacity using Adaptive Antenna Systems (AAS) on the basis of findings in the previous simulations on antenna parameters. Evaluations are performed by mapping link-level simulation results into a system level LTE simulator that models antennas in details and propagation in three dimensions

    Self-optimizing Strategies for Dynamic Vertical Sectorization in LTE Networks

    Get PDF
    International audience—Vertical Sectorization (VS) consists in creating ver-tically separated sectors in the original cell using an Active Antenna Systems (AAS) supporting two distinct beams with different downtilts. The total transmit power is split between the two sectors, while the frequency bandwidth can be reused by each sector, creating additional interference between the two sectors. For low traffic demand, VS may lead to performance degradation, while for high traffic demand in both sectors, VS is likely to bring about important capacity gains. Hence intelligent activation policy of VS is needed to fully benefit from this feature. In this paper, we propose an approach taking advantage of the more focused downtilted beam. A dynamic alpha fair bandwidth sharing is proposed for low and medium load. It is autonomously replaced by full bandwidth reuse for high load scenarios using a threshold-based controller. A flow-level dynamic simulator is used to numerically validate the proposed mechanisms
    corecore