1,194 research outputs found

    Performance Evaluation of Multiterminal Backhaul Compression for Cloud Radio Access Networks

    Full text link
    In cloud radio access networks (C-RANs), the baseband processing of the available macro- or pico/femto-base stations (BSs) is migrated to control units, each of which manages a subset of BS antennas. The centralized information processing at the control units enables effective interference management. The main roadblock to the implementation of C-RANs hinges on the effective integration of the radio units, i.e., the BSs, with the backhaul network. This work first reviews in a unified way recent results on the application of advanced multiterminal, as opposed to standard point-to-point, backhaul compression techniques. The gains provided by multiterminal backhaul compression are then confirmed via extensive simulations based on standard cellular models. As an example, it is observed that multiterminal compression strategies provide performance gains of more than 60% for both the uplink and the downlink in terms of the cell-edge throughput.Comment: A shorter version of the paper has been submitted to CISS 201

    Full-Duplex Cloud Radio Access Network: Stochastic Design and Analysis

    Get PDF
    Full-duplex (FD) has emerged as a disruptive communications paradigm for enhancing the achievable spectral efficiency (SE), thanks to the recent major breakthroughs in self-interference (SI) mitigation. The FD versus half-duplex (HD) SE gain, in cellular networks, is however largely limited by the mutual-interference (MI) between the downlink (DL) and the uplink (UL). A potential remedy for tackling the MI bottleneck is through cooperative communications. This paper provides a stochastic design and analysis of FD enabled cloud radio access network (C-RAN) under the Poisson point process (PPP)-based abstraction model of multi-antenna radio units (RUs) and user equipments (UEs). We consider different disjoint and user-centric approaches towards the formation of finite clusters in the C-RAN. Contrary to most existing studies, we explicitly take into consideration non-isotropic fading channel conditions and finite-capacity fronthaul links. Accordingly, upper-bound expressions for the C-RAN DL and UL SEs, involving the statistics of all intended and interfering signals, are derived. The performance of the FD C-RAN is investigated through the proposed theoretical framework and Monte-Carlo (MC) simulations. The results indicate that significant FD versus HD C-RAN SE gains can be achieved, particularly in the presence of sufficient-capacity fronthaul links and advanced interference cancellation capabilities
    • …
    corecore