59 research outputs found

    A Wireless Optical Backhaul Solution for Optical Attocell Networks

    Get PDF

    Wireless optical backhauling for optical attocell networks

    Get PDF
    The backhaul of tens and hundreds of light fidelity (LiFi)-enabled luminaires constitutes a major challenge. The problem of backhauling for optical attocell networks has been approached by a number of wired solutions such as in-building power line communication (PLC), Ethernet and optical fiber. In this work, an alternative solution is proposed based on wireless optical communication in visible light (VL) and infrared (IR) bands. The proposed solution is thoroughly elaborated using a system level methodology. For a multi-user optical attocell network based on direct current biased optical orthogonal frequency division multiplexing (DCO-OFDM) and decode-and-forward (DF) relaying, detailed modeling and analysis of signal-to-interference-plus- noise (SINR) and end-to-end sum rate are presented, taking into account the effects of inter-backhaul and backhaul-to-access interferences. Inspired by concepts developed for radio frequency (RF) cellular networks, full-reuse visible light (FR-VL) and in-band visible light (IB-VL) bandwidth allocation policies are proposed to realize backhauling in the VL band. The transmission power is opportunistically minimized to enhance the backhaul power efficiency. For a two-tier FR-VL network, there is a technological challenge due to the limited capacity of the bottleneck backhaul link. The IR band is employed to add an extra degree of freedom for the backhaul capacity. For the IR backhaul system, a power-bandwidth tradeoff formulation is presented and closed form analytical expressions are derived for the corresponding power control coefficients. The sum rate performance of the network is studied using extensive Monte Carlo simulations. In addition, the effect of imperfect alignment in backhaul links is studied by using Monte Carlo simulation techniques. The emission semi-angle of backhaul LEDs is identified as a determining factor for the network performance. With the assumption that the access and backhaul systems share the same propagation medium, a large semi-angle of backhaul LEDs results in a substantial degradation in performance especially under FR-VL backhauling. However, it is shown both theoretically and by simulations that by choosing a sufficiently small semi-angle value, the adverse effect of the backhaul interference is entirely eliminated. By employing a narrow light beam in the back-haul system, the application of wireless optical backhauling is extended to multi-tier optical attocell networks. As a result of multi-hop backhauling with a tree topology, new challenges arise concerning optimal scheduling of finite bandwidth and power resources of the bottleneck backhaul link, i.e., optimal bandwidth sharing and opportunistic power minimization. To tackle the former challenge, optimal user-based and cell-based scheduling algorithms are developed. The latter challenge is addressed by introducing novel adaptive power control (APC) and fixed power control (FPC) schemes. The proposed bandwidth scheduling policies and power control schemes are supported by an analysis of their corresponding power control coefficients. Furthermore, another possible application of wireless optical backhauling for indoor networks is in downlink base station (BS) cooperation. More specifically, novel cooperative transmission schemes of non-orthogonal DF (NDF) and joint transmission with DF (JDF) in conjunction with fractional frequency reuse (FFR) partitioning are proposed for an optical attocell downlink. Their performance gains over baseline scenarios are assessed using Monte Carlo simulations

    DESIGN AND OPTIMIZATION OF SIMULTANEOUS WIRELESS INFORMATION AND POWER TRANSFER SYSTEMS

    Get PDF
    The recent trends in the domain of wireless communications indicate severe upcoming challenges, both in terms of infrastructure as well as design of novel techniques. On the other hand, the world population keeps witnessing or hearing about new generations of mobile/wireless technologies within every half to one decade. It is certain the wireless communication systems have enabled the exchange of information without any physical cable(s), however, the dependence of the mobile devices on the power cables still persist. Each passing year unveils several critical challenges related to the increasing capacity and performance needs, power optimization at complex hardware circuitries, mobility of the users, and demand for even better energy efficiency algorithms at the wireless devices. Moreover, an additional issue is raised in the form of continuous battery drainage at these limited-power devices for sufficing their assertive demands. In this regard, optimal performance at any device is heavily constrained by either wired, or an inductive based wireless recharging of the equipment on a continuous basis. This process is very inconvenient and such a problem is foreseen to persist in future, irrespective of the wireless communication method used. Recently, a promising idea for simultaneous wireless radio-frequency (RF) transmission of information and energy came into spotlight during the last decade. This technique does not only guarantee a more flexible recharging alternative, but also ensures its co-existence with any of the existing (RF-based) or alternatively proposed methods of wireless communications, such as visible light communications (VLC) (e.g., Light Fidelity (Li-Fi)), optical communications (e.g., LASER-equipped communication systems), and far-envisioned quantum-based communication systems. In addition, this scheme is expected to cater to the needs of many current and future technologies like wearable devices, sensors used in hazardous areas, 5G and beyond, etc. This Thesis presents a detailed investigation of several interesting scenarios in this direction, specifically concerning design and optimization of such RF-based power transfer systems. The first chapter of this Thesis provides a detailed overview of the considered topic, which serves as the foundation step. The details include the highlights about its main contributions, discussion about the adopted mathematical (optimization) tools, and further refined minutiae about its organization. Following this, a detailed survey on the wireless power transmission (WPT) techniques is provided, which includes the discussion about historical developments of WPT comprising its present forms, consideration of WPT with wireless communications, and its compatibility with the existing techniques. Moreover, a review on various types of RF energy harvesting (EH) modules is incorporated, along with a brief and general overview on the system modeling, the modeling assumptions, and recent industrial considerations. Furthermore, this Thesis work has been divided into three main research topics, as follows. Firstly, the notion of simultaneous wireless information and power transmission (SWIPT) is investigated in conjunction with the cooperative systems framework consisting of single source, multiple relays and multiple users. In this context, several interesting aspects like relay selection, multi-carrier, and resource allocation are considered, along with problem formulations dealing with either maximization of throughput, maximization of harvested energy, or both. Secondly, this Thesis builds up on the idea of transmit precoder design for wireless multigroup multicasting systems in conjunction with SWIPT. Herein, the advantages of adopting separate multicasting and energy precoder designs are illustrated, where we investigate the benefits of multiple antenna transmitters by exploiting the similarities between broadcasting information and wirelessly transferring power. The proposed design does not only facilitates the SWIPT mechanism, but may also serve as a potential candidate to complement the separate waveform designing mechanism with exclusive RF signals meant for information and power transmissions, respectively. Lastly, a novel mechanism is developed to establish a relationship between the SWIPT and cache-enabled cooperative systems. In this direction, benefits of adopting the SWIPT-caching framework are illustrated, with special emphasis on an enhanced rate-energy (R-E) trade-off in contrast to the traditional SWIPT systems. The common notion in the context of SWIPT revolves around the transmission of information, and storage of power. In this vein, the proposed work investigates the system wherein both information and power can be transmitted and stored. The Thesis finally concludes with insights on the future directions and open research challenges associated with the considered framework

    Design of large polyphase filters in the Quadratic Residue Number System

    Full text link

    Temperature aware power optimization for multicore floating-point units

    Full text link

    AN EFFICIENT INTERFERENCE AVOIDANCE SCHEME FOR DEVICE-TODEVICE ENABLED FIFTH GENERATION NARROWBAND INTERNET OF THINGS NETWOKS’

    Get PDF
    Narrowband Internet of Things (NB-IoT) is a low-power wide-area (LPWA) technology built on long-term evolution (LTE) functionalities and standardized by the 3rd-Generation Partnership Project (3GPP). Due to its support for massive machine-type communication (mMTC) and different IoT use cases with rigorous standards in terms of connection, energy efficiency, reachability, reliability, and latency, NB-IoT has attracted the research community. However, as the capacity needs for various IoT use cases expand, the LTE evolved packet core (EPC) system's numerous functionalities may become overburdened and suboptimal. Several research efforts are currently in progress to address these challenges. As a result, an overview of these efforts with a specific focus on the optimized architecture of the LTE EPC functionalities, the 5G architectural design for NB-IoT integration, the enabling technologies necessary for 5G NB-IoT, 5G new radio (NR) coexistence with NB-IoT, and feasible architectural deployment schemes of NB-IoT with cellular networks is discussed. This thesis also presents cloud-assisted relay with backscatter communication as part of a detailed study of the technical performance attributes and channel communication characteristics from the physical (PHY) and medium access control (MAC) layers of the NB-IoT, with a focus on 5G. The numerous drawbacks that come with simulating these systems are explored. The enabling market for NB-IoT, the benefits for a few use cases, and the potential critical challenges associated with their deployment are all highlighted. Fortunately, the cyclic prefix orthogonal frequency division multiplexing (CPOFDM) based waveform by 3GPP NR for improved mobile broadband (eMBB) services does not prohibit the use of other waveforms in other services, such as the NB-IoT service for mMTC. As a result, the coexistence of 5G NR and NB-IoT must be manageably orthogonal (or quasi-orthogonal) to minimize mutual interference that limits the form of freedom in the waveform's overall design. As a result, 5G coexistence with NB-IoT will introduce a new interference challenge, distinct from that of the legacy network, even though the NR's coexistence with NB-IoT is believed to improve network capacity and expand the coverage of the user data rate, as well as improves robust communication through frequency reuse. Interference challenges may make channel estimation difficult for NB-IoT devices, limiting the user performance and spectral efficiency. Various existing interference mitigation solutions either add to the network's overhead, computational complexity and delay or are hampered by low data rate and coverage. These algorithms are unsuitable for an NB-IoT network owing to the low-complexity nature. As a result, a D2D communication based interference-control technique becomes an effective strategy for addressing this problem. This thesis used D2D communication to decrease the network bottleneck in dense 5G NBIoT networks prone to interference. For D2D-enabled 5G NB-IoT systems, the thesis presents an interference-avoidance resource allocation that considers the less favourable cell edge NUEs. To simplify the algorithm's computing complexity and reduce interference power, the system divides the optimization problem into three sub-problems. First, in an orthogonal deployment technique using channel state information (CSI), the channel gain factor is leveraged by selecting a probable reuse channel with higher QoS control. Second, a bisection search approach is used to find the best power control that maximizes the network sum rate, and third, the Hungarian algorithm is used to build a maximum bipartite matching strategy to choose the optimal pairing pattern between the sets of NUEs and the D2D pairs. The proposed approach improves the D2D sum rate and overall network SINR of the 5G NB-IoT system, according to the numerical data. The maximum power constraint of the D2D pair, D2D's location, Pico-base station (PBS) cell radius, number of potential reuse channels, and cluster distance impact the D2D pair's performance. The simulation results achieve 28.35%, 31.33%, and 39% SINR performance higher than the ARSAD, DCORA, and RRA algorithms when the number of NUEs is twice the number of D2D pairs, and 2.52%, 14.80%, and 39.89% SINR performance higher than the ARSAD, RRA, and DCORA when the number of NUEs and D2D pairs are equal. As a result, a D2D sum rate increase of 9.23%, 11.26%, and 13.92% higher than the ARSAD, DCORA, and RRA when the NUE’s number is twice the number of D2D pairs, and a D2D’s sum rate increase of 1.18%, 4.64% and 15.93% higher than the ARSAD, RRA and DCORA respectively, with an equal number of NUEs and D2D pairs is achieved. The results demonstrate the efficacy of the proposed scheme. The thesis also addressed the problem where the cell-edge NUE's QoS is critical to challenges such as long-distance transmission, delays, low bandwidth utilization, and high system overhead that affect 5G NB-IoT network performance. In this case, most cell-edge NUEs boost their transmit power to maximize network throughput. Integrating cooperating D2D relaying technique into 5G NB-IoT heterogeneous network (HetNet) uplink spectrum sharing increases the system's spectral efficiency and interference power, further degrading the network. Using a max-max SINR (Max-SINR) approach, this thesis proposed an interference-aware D2D relaying strategy for 5G NB-IoT QoS improvement for a cell-edge NUE to achieve optimum system performance. The Lagrangian-dual technique is used to optimize the transmit power of the cell-edge NUE to the relay based on the average interference power constraint, while the relay to the NB-IoT base station (NBS) employs a fixed transmit power. To choose an optimal D2D relay node, the channel-to-interference plus noise ratio (CINR) of all available D2D relays is used to maximize the minimum cell-edge NUE's data rate while ensuring the cellular NUEs' QoS requirements are satisfied. Best harmonic mean, best-worst, half-duplex relay selection, and a D2D communication scheme were among the other relaying selection strategies studied. The simulation results reveal that the Max-SINR selection scheme outperforms all other selection schemes due to the high channel gain between the two communication devices except for the D2D communication scheme. The proposed algorithm achieves 21.27% SINR performance, which is nearly identical to the half-duplex scheme, but outperforms the best-worst and harmonic selection techniques by 81.27% and 40.29%, respectively. As a result, as the number of D2D relays increases, the capacity increases by 14.10% and 47.19%, respectively, over harmonic and half-duplex techniques. Finally, the thesis presents future research works on interference control in addition with the open research directions on PHY and MAC properties and a SWOT (Strengths, Weaknesses, Opportunities, and Threats) analysis presented in Chapter 2 to encourage further study on 5G NB-IoT
    • …
    corecore